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1 INTRODUCTION

The goal of this proposed research is to apply modern, novel methods of data analysis useful
for cataloging statistical correlations between response patterns of chemicals tested in the
NCI’s 60 tumor cell panel [1, 2] and deriving consensus structural details of active agents [3]-
The tools developed in this research will directly improve the process of discovering novel
lead compounds active in the treatment of breast, as well as other, cancers. Relating con-
sensus structural details within classes of compounds to clear molecular target and putative
mechanism of drug action [4] provides a powerful means to combine the results from these
screens with the novel molecular design approach [5]. This report describes our research
efforts to catalog biological response patterns within cellular screening data, and tabulate
consensus chemical structures. Our analysis finds that very careful consideration of factors
related to data collection and statistical analyses are necessary to extract information from
large datasets. The insight gained from this research can be directly applied to the andlysis

and mining of additional information gathered from large-scale screening efforts.




2 BODY

An integral component of our research has been the development of powerful computational
" tools for data analysis. A traditional *cookbook’ does not exist for the analysis of large
and complex datasets [6]. Proper evaluation of information mined from such data requires
a detailed understanding about decisions related to all areas of these experiments. The

following section will briefly outline our efforts to address the effects of various decisions on

data mining.

2.1 Data Conditioning

The National Cancer Institute’s anticancer tumor cell screen measures growth retardation of
selected immortalized tumor cell clones following exposure to a range of test concentrations
for each agent [7]. Using as an endpoint the logarithm of the test concentration that leads
to fifty percent growth inhibition, log(Glsp), a biological response pattern for all tumor cell
lines (typically 60 or more) is established for each tested compound. While the raw data
generated in this screen determines cellular potency, much of the interest in this data lies in
establishing the biological significance of these patterns; with the hope of identifying tumor
specific reagents. A Z-score conditioning of each row of the raw data is used to provide a

zero mean reference value, scaled according to its standard deviation, while preserving signal

variation;

(g —3) )
1] T 3
gj

where z;; is the Z-score for element 4,7, gi; is the log(G1I5) value, g; is the mean and o; is
the absolute deviation across row j (i.e. each compound). Using a metric related to data
clustering (to be presented later) we find that the Z-score transformed data improves the
quality of the clustering by ~ 17% when compared to the raw data. An additional consider-
ation for data conditioning involves the intrinsic sensitivity of cell lines to chemical agents.
Prior analysis found that, for example, the leukemia (leu) cell panel is most sensitive to

chemical agents, whereas, the non-small cell lung (Ins) panel is the least sensitive. Data nor-

malization is necessary to assess growth inhibition across all cell lines, rather than detecting




agents active against only the most sensitive cell lines. Z-score normalization of each cell
line’s response to ALL tested compounds is used to establish a éommon reference for each
cell line. Scaling the raw data across tumor cell types and across tested compounds pro-
vides a uniform means to assess pattern diversity within the complete set of tumor screening
data generated within the NCI's publically available database(www.dtp.nci.nih.gov). Ex-

amples of the effects of data conditioning are shown in Figure 1, for pattern and response

normalization.*

2.2 Self-Organizing Maps

Traditional methods for summarizing the results of large screening datasets seek to discover
subsets of data where similarities in response are observed. The initial step in this process
requires the selection of a pairwise measure of pattern similarity that assigns the highest score
to the most similar datasets. Such pairwise measures include rank correlation and Buclidean,
Mahalanobis or Minkowski measures of distance. These pairwise measures provide a simple
and direct means to identify highly similar response subsets. Limitations in this procedure
are known to occur, particularly when data is contaminated with large amounts of noise,
resulting in a greater likelihood of random statistical correlations, and increased difficulty
in determining 'real’ relationships [8, 9]. Methods designed to treat noisy data include
Principal Component Analysis and the related method of Singular Value Decomposition;
where the data are reexpressed along directions that maximize the signal-to-noise ratio [10}.
Recently the self-organizing map (SOM) method [11] has found great utility in studies of
voice recognition and visual processing; datasets that often exhibit large amounts of random
noise and missing data. Designed specifically to deal with extremely noisy and incomplete
datasets, the algorithms associated with the SOM method are well-suited for mining the
NCT anti-cancer tumor cell line screen for biochemical information useful in the analysis of

drug screening data.

The SOM method can be divided into two regimes: clustering in high dimensional space,

“Data from all tumor cell lines was used in our analysis. This set consists of 80 cell-lines collected from
leukemia, non-small cell lung, small cell lung, colon, central nervous system, melanoma, ovarian, renal,

prostate and breast cancer tissues.




and projections into a lower dimensional display space (See Figure 2 and legend). Informa-
tion ’linkages’ between these two regimes provide a convenient means to validate clusters
in low-dimensional space, by examinations of the original data, as well as assist in data
interpretation and hypothesis generation. To accomplish this, the SOM method maps each
- compound’s data vector (V¥) on to an optimally defined set of lower-dimensional response

vectors, (R¥). This step is accomplished by minimizing the deviation between the data and

response vectors:

VR oc S h(|[V = REDIIV? = R (2)

where VR¥ is the incremental change in position of the response vector R, V7 is the set
of data vectors, and [|[V7 — RF|| is the distance between data and response vector. The
neighborhood kernel function h(||Vj — R*||), adjusts the position of the response vectors in
order to collectively order the map clusters according to their underlying neighborhoods in
data space. The form of the neighborhood kernal function exhibits a maximum when the data
and response vectors coincide and goes to zero as these vectors become more distant. Often
the neighborhood kernel is a Gaussian function, however, our analysis finds that Epanechicov
function [max(0,1-||V7 — RF||?)] consistently yields a lower optimal value for VRF, and will
be used for our analysis.

The form of equation 2 determines how the response vectors orient themselves to mirror
the data space, or alternatively, how the response vectors partition the data space into
clusters (see Figure 3) Regions that are rich in data vectors attract many response vectors and
as a result finely divide the most dense regions of data space. This process can be contrasted
with the more conventional Principal Component Analyses [12], where data is oftentimes
reoriented, in a linear fashion, on to the space of the top most principal components. The
biochemically important regions of the cancer screening data are not uniformly distributed
in the 80 dimensional tumor cell space, but rather are contained in densely populated sub-
spaces. A key feature of the SOM method is its ability to transform the data space so as

to make a two-dimensional projection map that is uniform in cluster neighbors. As a result

the data rich regions are stretched such that the biochemically relevant cluster distinctions

become apparent.



Two factors that make the SOM method particularly suited to drug exploration include
the data-based clustering mentioned above, and the ability to display these results in an
interpretable manner. The method for display is the uniform projection of the clustering in
high-dimensional space to a low dimension display space (see Figures 2 and 3) This mapping
is both simple and retains a great deal of the original high-dimensional information. An
additional noteworthy feature of the SOM analysis is the treatment of missing data. No
attempt is made estimate the missing data elements with, for example, the mean of the
data vector; rather these data are regarded as elements with an unknown value and the
SOM method simply skips over missing vector components. Attempts to analyze datasets
where missing elements were replaced by the mean of existing data consistently resulted
in poor cluster definition and increased error in measures of distance between data and
response vectors. A simple example illustrates this point. In a dataset where equivalent
measures of growth inhibition are obtained for only 64 of the 80 tumor cells, replacement
of the missing values by the group mean would contribute 25% of the calculated distance
[16/(80 — 16) = 0.25]. This large contribution from missing elements is unlikely to reflect
the underlying biological response and degrades the ability to construct structure/function
(referred to hereafter as S/F) correlations. The approach we have used is to keep missing
elements as unknown values.

Much pf the current excitement about drug discovery efforts is stimulated by the prospects
of mining large biological screening databases [13]. Accompanying this interest is the realiza-
tion that new tools will be needed to globally investigate and extract information from this
data. Our computational method has been specifically developed to examine the complete
drug discovery space contained in the biological screen under investigation. This method si-
multaneously examines the interrelation between all screened compounds and the biological
response space that they probe. The ability to globally rearrange the response space follows
from the form of the self-organizing map (SOM) mathematical algorithm, which has been de-
signed to facilitate mapping the high-dimensional data space into a lower-dimensional cluster
space that can be projected onto a two-dimensional map. Our results will demonstrate how

our tools can be used in these data mining efforts.




2.3 Standard Anticancer Agents

We begin with an analysis of tumor growth inhibition by 122 standard anticancer agents
compiled by Weinstein et al. annotated according to their putative mechanism of action
(MOA) [14, 15]. Using this data as an example, the basic concepts of SOM clustering and
its display capabilities can be illustrated. Figures 2 and 9 display the two-dimensional SOM
map for this data. The final map could be projected on to a 9 by 17 hexagonal array, with
the size of the hexagon at each node loci being proportional to the number of compounds
assigned to this cluster and gray-scale color intensity between nodes reflecting the distance
between neighboring clusters(See Figure 2 and Figure 9). Consistent with prior studies, these
standard agents could be separated into those with MOA’s involving inhibition of mitotic
activity and those affecting nucleic acid biosynthesis; the former grouping includes the classes
of taxanes, colchicines and vinca alkaloids, some of which are know to have selective activity
against different breast cancer tumors. This division is quite sharp, and appears in Figure 9 at
row six of the SOM map. The ability to segregate compounds by SOM clustering represents
an important first step in the identification of novel compounds with specific activity within
different cancer types. Within the anti-mitotic and nucleotide biosynthesis regions of the
map, well defined sub-clusters exist that, upon inspection, consist of structurally similar
compounds with stick-figure drawings of selected cluster members. displayed at the map
margins. This apparent consistency between molecular structure and function (putative
‘MOA) was used to develop a metric for detailed sensitivity studies regarding the choice of

parameters for our SOM optimization and their effect on quality of clustering.

2.4 Sensitivity Analysis

A detailed examination has been conducted to determine how the quality of the clustering is
effected by choices in the experimental design parameters such as the number of cell lines in
the screen, the size of the SOM clustering map, the treatment of noisy and incomplete data,
and the importance of data conditioning. We assess the quality of clustering by correlating
the SOM cluster memberships determined from the log(Gls) (i.e. functional) data with

the SOM clustering based on chemical structure. This approach assumes that chemical




structure is a surrogate for the ’true’ pharmacophore of the molecular target affecting cell
growth. This is clearly a simplifying approximation for the true 'hidden’ pharmacophore or
molecular target [16]. It should be noted that implicit in this discussion is a primary goal
of our research; the creation of a method to predict and understand the anticancer effect of
chemotherapeutic agents and to identify their molecular targets.

To examine the correlation between cluster membership based on biological response and
chemical structure, we have designed an extended mechanism of action (ExMOA) data set
which consists of 362 compounds, based on the 122 standard aﬁticancer agents discussed
above, but expanded to include compounds with strong structural similarity [17] (Tanimoto

Coeff .gt. 0.9) to these standard anticancer agents. SOM clustering of these compounds

into structural classes is based on the E-state bit vectors available in the CACTVS suite of -

computational tools (www.cactvs.org). These bit vector assignments represent 431 chemical
descriptors developed within CACTVS, with characteristics similar to assignments available
within the MDL ISIS keys. SOM clustering treats the vectors of 431 structural descriptors
for each agent in the same fashion as the vectors of log(G1Iso) values used for SOM clustering
of the biological data.

We have clustered the set of 362 ExMOA compounds with the E-state structural bit
vectors and have investigated compound clustering using the SOM method. The correlation
between biological function clusters and structural clusters was accomplished with a heuristic
matching algorithm that calculates the shared membership of clusters in both the function
and structure sets. This results in a structure/function (S/F) plot where the linear correlation
coefficient is the quantitative quality measure. It should be noted that what is chiefly of
interest is the change in S/F correlation, not the absolute quantity. Therefore, any measure
that accurately reflects relative correlation will serve as a surrogate marker for quality in the
sensitivity analysis.

Table 1 lists the correlations between cluster memberships determined from biological re-
sponse data (log(GIs)) and chemical structure (bit vectors) for different data conditioning
treatments. We have found a 15% [(0.9002-0.7820)/0.7820] improvement in the correlation
coefficient with the Z-score normalization over an analysis based on raw data. This improve-

‘ment is statistically significant, with an ANOV1 p value of 1.7e-15; a clear indication that
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7.-score normalization enhances the quality of clustering. Based on these results, we believe
it is important to routinely condition data to achieve a common reference and scale. In ad-
dition to Z-score normalization, the magnitude of any component of a data vector has been
capped at a value of 3 absolute deviation units from the vector mean. Capping prevents the
difference between two data vectors being dominated by a single or a few cell lines which have
extreme values. Avoiding strong outliers by data capping improves the S/F correlation by
2.0% [(0.9185-0.9002)/0.9002]. This apparently small improvement is, however, statistically
significant, with an ANOV1 p value of 4.4e-6, and has been adopted as a feature of data
conditioning.

Another important design choice for data conditioning, that has been mentioned earlier,
is the treatment of missing data. Oftentimes missing data are replaced by the mean value
based on existing data. Our analysis indicates that this approach can substantially distort the
information contained within the actual data. We find that retaining missing data elements
as unknowns, rather that replacement by their vector mean, improves the S/F correlation
coefficient by 6% [(0.9185-0.8654)/0.8654]. This improvement is statistically significant, with
an ANOV1 p value of 7.6e-14, [18] and supports the earlier claim that missing data should

be treated as unknown. See Figure 4 for representative structure/function correlation plots.

2.5 Map Dimensions

The possibility that map dimensions may affect the quality of clusters was investigated using
S/F correlations. The SOM method contains a heuristic for the ratio of the relative sides
of the two-dimensional SOM map based on the ratio of the two largest eigenvalues as the
linear SVD solution to the dataset [12]. Using this heuristic and the ExMOA dataset, the
SOM analysis recommends a map size of 17x9 to yield an eigenvalue ratio of 1.89. Figure 5
displays the dependence of the S/F correlation coefficient for a selection of map ratios (the
cluster number ~ 153 for all maps shown in the Figure 5.) The ratio that maximized the
correlation coefficient matched the heuristic at 1.89. Ratios below this value generate thinner
and narrower maps with a concomitant rapid decrease in the S/F correlation. This result
suggests that the arrangement of ExMOA clusters cannot be easily ordered, as would occur

for the clades in a single linkage hierarchical tree. More square maps, i.e. higher ratio, also
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resulted in decreased S/F correlations, but more gradually than for lower eigenvalue ratios.

2.6 Number of Clusters

Perhaps the most controversial part of cluster analysis involves determination of cluster
number. One popular approach repeatedly samples single linkage hierarchical cluster trees
generated by removing one or more data elements. Cluster nodes that occur most frequently
in the sample trees define the number of clusters. The approach we have used calculates
the dependence of the S/F correlation on cluster size, and the uses the percent of maximal
clustering to determine cluster number. Cluster size in SOM clustering is equivalent to map
dimensions. Using the ExMOA dataset, SOM clusters were generated for a range of map
dimensions, and the results are displayed in Figure 6. For 99% of maximal clustering the
ExMOA is calculated to have ~ 110 clusters. Since there is exponential improvement in the
percent maximal clusters with cluster number, the S /F correlation decreases with increasing
number of clusters. Based on the heuristic that a cluster number above 110 is sufficient to

achieve at least 99% coverage of S/F correlations our selection of 153 (17x9) clusters exceeds

this criterion.

2.7 Number of Cell Lines

Our analysis explored the role of tumor cell number in our SOM analysis using the struc-
ture/function correlation. The correlation with number of cell lines has two or three basic
regimes (see Figure 7). Below ~ 20 cell lines the S/F correlation drops off dramatically,
between 20-50 cell lines the correlation rapidly increases, while for greater than 70 cell lines
the correlation achieves a maximum. Although further analysis of this result will not be pre-
sented here, there is a clear indication that a near optimal clustering result can be achieved

with fewer than the 80 tumor cell lines analyzed herein.

2.8 Robustness

We have investigated the behavior of our method of analysis towards noisy and degraded

input data. Figure 8 (upper panel) shows the sigmoidal decrease in S/F correlation with
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decreasing completeness of the input data. The data set was degraded by systematically
removing data elements with the most extreme Z-score values. The results show that from
100% thru 70% completeness of data the S/F correlation is resistant to this degradation.
Below 70% the correlation coefficient rapidly decreases approaching a minima at 0.45.

This analysis illustrates the importance of diversity within a data vector. The behavior of
the S/F correlation with degraded the data is relatively stable against datasets which exhibit
above a 10% coefficient of variation. Below Z-score of ~1.1 absolute deviation units the S/F
correlation is drastically decreased (see Figure 8 lower panel). Consistent with intuition, a
data vector with a large amount of diversity can be more easily assigned to a cluster when
compared to data vectors with a small absolute deviation. Based on this result, our analysis

excludes data vectors with a mean absolute deviation below 8%.
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Table 1. Data Conditioning Structure/Function Correlation

Missing Data Normalization Capping | S/F Corr. Mean S/F Corr. Std. | Samples
NalN Raw No Cap 0.7820 0.0648 20
NaN Z-score No Cap 0.9002 0.0182 40
NaN Z-score Cap + 3 0.9185 0.0147 40
Mean Z-score Cap + 3 0.8654 0.0339 40

Multiple SOM maps were generated from random starting conditions for different combina-

tions of data conditioning with respect to normalization(Raw vs. Z-score), capping (none vs

+3) and treatment of missing data (replace with mean vs NaN:unknown). The correlation

coefficient is determined between each of these SOM maps and the SOM clustering based on

the structural descriptors. The basis of this comparison is that maps with the highest struc-

ture/function correlations are most desirable. Values represent averages for total number of

samples.
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4 Figure Captions:

Figure 1:

Pattern Normalization - The growth inhibition (GIso) biological response pattern of a test
compound is dependent on a variety of experimental features. This results in a wide variance
in signal strength masking the underlying biological response of the cell lines to the given
test compound. The log(GlIsp) data for a given compound is normalized by transforming
with the Z-score function across the cell lines [ zi;; = (9s5 — §;)/0; for each element across
row j; where z; is the Z-score for element ¢, 7, gi; is the log(Gls) value, g; is the mean and
o; is the standard deviation across row j ]. The magnitude of each element is capped at +/-
3 standard deviation units.

Response Normalization - Different cell lines have varying sensitivities in résponse to the in-
troduction of test compounds. For example, multi-drug resistant cell lines would be expected
to give low signal strength because these cells can efficiently transport small molecules out
of the cell. The reéponse pattern is normalized across the cell lines by transforming each
column of the data matrix with the Z-score function. The magnitude of each element is
capped at 4/- 3 standard deviation units. Data conditioning by normalizing pattern and
response improves clustering and makes the patterns in the data visually accessible. The
ordering of cell lines is as follows: leukemia (leu) 1-8, lung not small cell (Ins) 9-20, small

cell lung (scl) 21-23, colon (col) 24-32, central nervous system (cns) 33-41, melanoma (mel)

© 49-51, ovarian (ova) 52-57, renal (ren) 58-67, prostate (pro) 68-69, breast (bre) 70-80. The

data set shown consists of 533 data vectors which comprise an extended mechanism of action
(ExMOA) data set.

Figure 2: Clustering(Top Panel) - The conditioned growth inhibition (log(GIsp)) data
consists of an M x N matrix of data elements. In the example above there are 533 data
vectors for the compounds (M = 533), and there are 80 components for each data vector
measuring the response across the different cell lines (N = 80). Two of thé 80 dimensions
for the 533 data vectors are shown in the figure (blue dots.) A set of P cluster vectors are
chosen to represent the data space. The number of cluster vectors and the map dimensions

are chosen to reflect the information contained in the data space as measured by the number
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of data vector samples and the extent of the first two principle components found with
single value decomposition (SVD) method. The cluster vectors are shown as open red circles
(in the example above P = 153.) The plot on the left shows the initial coordinates for
the cluster vectors (2 of the 80 dimensions are shown.) These initial coordinates where
calculated by gridding the vectors along the principle component vectors found by solving
the linear equations via the SVD method. The right plot displays the cluster vectors found
with the self-organizing map (SOM) method. The SOM method minimizes the sum square
error distance between the data and the cluster vectors which represent the local biological
response space.

Mapping(Bottom Panel) - To make the information contained in the high dimensional clus-
tering space accessible for drug discovery, the P clusters in N dimensions are projected on
to a two dimensional map which represents the biological response space. The mapping is
a to non-linearly function which transforms the data space such that each cluster vector is
uniformly represented in the two dimensional map. The SOM clustering and uniform projec-
tion stretches the data space such that the map has a finer discrimination where more data
is present. This ability to faithfully represent the biologically important information makes
drug exploration and hypothesis generation possible with the large and high-dimensional
data sets. The map shown above and enlarged in Figure 3, makes the mechanism of action
and compouhd class readily accessible.

Figure 3: Sample of SOM clustering. Insert region on complete SOM map is expanded and
partitioned according to response vectors (open red circles) and data vectors (closed blue
dots). Partitions in the insert display relationship between information-rich and information-
poor regions on the map and the representative SOM data vectors. Regions that are rich in
data attract many response vectors which finely divide that region of data space and enhance
discrimination between response patterns for the cell screening data.

Figure 4: Sample of structure/function correlation for different forms of data conditioning.
Top panel: z-score, capping and no consideration for unknown data. Middle panel: z-score,
no capping and no consideration for unknown data. Bottom panel: z-score, no capping and

replacement of unknowns with group average. Best cases occur for z-score, capping adn NaN

data conditioning.
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Figure 5: Structure/function correlation versus ratio of map dimensions. Maximum average
structure/function correlations occur for a ratio of map dimension of 1.89. This corresponds
to the SOM map dimensions of 17x9. Points represent averages of correlation coefficient and
standard deviation of correlation coefficient.

Figure 6: Structure/function correlation versus number of clusters. Repeat SOM maps were
generated for different cluster numbers. The 99 percent asymptote occurs at 110 clusters
and suggests that, on average, the highest structure/function correlations will arise for more
that 99 percent of the SOM maps when cluster size exceeds 110.

Figure 7: Structure/function correlation versus number of cell lines. Highest correlations oc-
cur for greatest number of cell lines. Plateaus are observed in the average structure/function
correlation for 50-60 cell lines and 20-30 cell lines. Fewer that 20 cell lines drastically reduce
the structure/function correlation coefficient.

Figure 8: Structﬁre /function correlation versus data completeness (upper panel) and versus
z-score - threshold (lower panel). Incomplete datasets are reasonably well tolerated above
60 percent. When greater that 40 percent of the data is removed, the structure/function
correlation declines continuously. Open circles represent maximum response. Lower panel
displays correspondence between structure/function correlation coefficient and z—scofe. Low
z-scores indicate a relatively flat cellular response pattern. A uniform cellular response is
accompanied by poor placement in SOM map clusters, and can be used to locate random
regions of SOM maps.

Figure 9: Complete SOM map for the ExMOA dataset (see text). Map consists of 17x9 clus-
ters, with the number of compounds in each cluster indicated by the size of hexagon at each
loci (also highlighted with actual numerical count). Som analysis display a clear separation
between anti-mitotic agents (top) and nucleic acid affecting agents (bottom). Compounds
within selected clusters are shown at map borders. Consistent with the structuré/function
correlation analysis, a strong correspondence is seen between structurally similar corﬁpounds

and their appearance in a functional cluster.
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5 KEY RESEARCH ACCOMPLISHMENTS:

The primary accomplishments in this research project are to clearly establish that screening
patterns can be used effectively to organise large biological datasets into a meaningful form
useful for hypothesis generation about mechanism of action for anticancer agents. This
foundation provides the basis for a complete analysis of ALL the screening data publically

available at the National Cancer Institute’s Drug Screening effort.
e Construction of an in silico toolkit for the comprehensive analysis of large screening
databases.

e Application of a suite of graphical displays as aids in data analysis.

e The development of a rigorous method for correlating biological function, measured in

terms of cell killing, and structural classifications of selected compounds.

e The application of structure/function maps for pharmacophore searching and receptor
mapping.

e Applications of this information for exploring efficacy of molecular isotypes.

e The development of a means for systematic investigations of cellular response patterns

and their application towards an improved molecular taxonomy of chronic diseases

such as cancer.

e The application of this information for the purpose of identifying and modifying rep-

resentative elements of combinatorial libraries as potential lead compounds.
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6 Reportable Outcomes:

e Keskin, O., Bahar, I, Jernigan, R.L., Beutler, J.A., Shoemaker, R.H., Sausville, E.A.
and Covell, D.G.: Characterization of anticancer agents by their growth inhibitory

activity asnd relationships to mechanism if action and structure. Anticancer Drug

Design 15, 79-98, 2000.

e The development of tools for anticancer drug discovery. Rabow, A.R., Keskin, O.,

Shoemaker, R.H., Sausville, E.A., Jernigan, R.L. and Covell, D.G. Presentation at
Protein Society Meetings, 2000.

e In silico drug discovery. A.R. Rabow, Shoemaker, R.H., Sausville, E.A., Jernigan, R.L.

and Covell, D.G. Presentation at annual National Cancer Institute Retreat, 2000.

e Deriving Structures for Lead Drug Discovery. A.R. Rabow, Shoemaker, R.H., Sausville,
E.A. Jernigan, R.L. and Covell, D.G., Presented at the Era of Hope Meeting in Atlanta,

GA. 2000.

e Bai, R., Covell, D. G., Pei, X-F, Ewell, J. B., Nguyen, N. Y., Brossi, A. and Hamel, E.:
Mapping the binding site of colchicinoids on beta-tubulin: 2-chloroacetyl-2-demethylthiocolchicine

covalently reacts predominately with cysteine 239 and secondly with cysteine 354, J

Biol. Chem, to appear, 2000.

e Rabow, A.R., Shoemaker, R.A., Sausville, E.A. and Covell, D. G.: Analysis of the

NCI’s tumor screening panel; Assessment of relationships between chemical structure

and mechanism of action. submitted, 2000.
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3 CONCLUSION

A suite of computational tools has been developed for detailed analysis of large-scale high-
throughput screening data for the purpose of lead drug discovery andv potential identification
of novel molecular targets in the treatment of human cancers. The method has been de-
veloped and tested against the National Cancer Institute’s 60 tumor cell panel. This suite
of analytical and display tools is focused in the areas of data conditioning, pattern associa-
tion, visualization and data presentation, with additional functionalities that address signal
scaling issues, missing data elements, and locality /non-linearity features of the data-space.
Careful considerations in these areas are found to significantly enhance the extraction of
additional information from large, complicated, screening databases as well as pfovide a
general tool well suited for drug discovery. These results find strong correlations between
molecular structure and putative mechanism of action for large classes of anticancer agents;
with a clear segregation of compounds according to their activities against specific molecular
targets. More significantly, screening cells that are found within specific tumor cell panels
are found to respond similarly to classes of molecular agents. This information can lead
directly to the formulation of alternative chemical analogs and hypotheses about specific

molecular targets and their affected biosynthetic pathways [19].
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7 APPENDIX:

A description of a significant portion of this effort is in the final stages of preparation. When

this manuscript has been completed, a copy can be forwarded to the ARMY for inclusion in

this report.
The two following references will be provided herein:

e Keskin, O., Bahar, I, Jernigan, R.L., Beutler, J.A., Shoemaker, R.H., Sausville, E.A.
and Covell, D.G.: Characterization of anticancer agents by their growth inhibitory

activity asnd relationships to mechanism if action and structure. Anticancer Drug

Design 15, 79-98, 2000.

e Bai, R., Covell, D. G., Pei, X-F, Ewell, J. B., Nguyen, N. Y., Brossi, A. and Hamel, E.:
Mapping the binding site of colchicinoids on beta-tubulin: 2—chloroacetyl—Q—demethylthiocolchicine
covalently reacts predominately with cysteine 239 and secondly with cysteine 354, J

Biol. Chem, to appear, 2000.

8 FINAL REPORT:

Dr. Alfred R. Rabow has been completely funded by the IDEAS award. His efforts have
‘been instrumental and vital for establishing a larger program involved in data analysis of
screening measurements. This effort would not have been possible without the support of the
ARMY Breast Cancer Project. Duing the award period, one SGI workstation was purchased

and used as a dedicated computer for this project.
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Summary

An analysis of the growth inhibitory potency of 122 anticancer
agents available from the National Cancer Institute anticancer
drug screen is presented. Methods of singular value decomposi-
tion (SVD) were applied to determine the matrix of distances
between all compounds. These SVD-derived dissimilarity dis-
tances were used to cluster compounds that exhibit similar tumor
growth inhibitory activity patterns against 60 human cancer cell
lines. Cluster analysis divides the 122 standard agents into 25
statistically distinct groups. The first eight groups include
structurally diverse compounds with reactive functionalities that
act as DNA-damaging agents while the remaining 17 groups
include compounds that inhibit nucleic acid biosynthesis and
mitosis. Examination of the average activity patterns across the
60 tumor cell lines reveals unique ‘fingerprints’ associated with
each group. A diverse set of structural features are observed
for compounds within these groups, with frequent occurrences
of strong within-group structural similarities. Clustering of cell
types by their response to the 122 anticancer agents divides the
60 cell types into 21 groups. The strongest within-panel group-
ings were found for the renal, leukemia and ovarian cell panels.
These results contribute to the basis for comparisons between
log(Glsp) screening patterns of the 122 anticancer agents and
additional tested compounds.

Key words
clustering behavior/SVD/tumor cell-line screen

Introduction

Development of high-throughput screening technologies in
drug discovery has led to dramatic increases in the diversity
of compounds that can be tested (Gordon er al., 1994;
Ganesan, 1998; Gray et al., 1998) and in the types of targets
available for testing (Monks et al., 1991; Grever et al., 1992;
Boyd and Paull, 1995; Kauver et al., 1995; Chee et al., 1996;
Botstein and Cherry, 1997; Castell and Gomes-Lechon, 1997,
Zhang et al., 1997). Accompanying these advances has been
the development of a diverse collection of general ap-
proaches for mining the large quantity of data generated by
these systems (Marchington, 1995; O’Connor et al., 1997,
Ajay et al., 1998; Bellenson, 1998; Benton, 1998; Gillet et al.,
1998; Sadowski et al, 1998; Shi er al., 1998b,c). Database-
related, information-intensive drug discovery efforts (Myers
et al, 1997) are showing promise in revealing relationships
between drug screening profiles and potential therapeutic
targets. Extending these efforts by further exploration of
relationships between screening profiles and chemical
structures may enhance the discovery of novel chemothera-
peutic agents.

In this paper we re-examine the publicly available data
from the cancer drug discovery program at the National
Cancer Institute (NCI). Our goal is to systematically analyze
the relationship between (i) the growth inhibitory activities
for a set of anticancer agents from the panel of 60 tumor cell
lines; (ii) the structural features of the tested agents; and
(iii) their apparent mechanism of growth inhibitory action
(MOA). Based on the hypothesis that selective in vitro activity
of a compound against cancer cell lines might be predictive of
its activity against the corresponding specific type of human
tumor, the NCI has developed and made available results of
primary drug screens against 60 different human cancer cell
lines (http://dtp.nci.nih.gov). Among other endpoints avail-
able in the NCI’s database, the growth inhibitory activity of
each compound, expressed as the drug concentration (Gls)
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required to inhibit tumor cell growth by 50% compared with
an untreated cell was selected for analysis. Log(Gls) values
for a given compound across all tumor cell lines provide
its activity pattern for comparison with patterns from other
tested compounds. Similarities in patterns of in vitro inhib-
itory activity have been shown to be related to MOAs, modes
of resistance and molecular structure (Boyd, 1995; Boyd and
Paull, 1995; Paull e al., 1995; Hrach, 1997; Myers et al., 1997,
O’Connor et al., 1997; Shi et al., 1998b,c). To date, the NCI
has screened >70 000 chemical compounds and a similar
number of natural product extracts against a panel of 60
different tumor cell lines.

Several algorithms have previously been applied to analyze
activity patterns. These algorithms utilize, in various ways,
the tools of multivariate statistical clustering (Hrach et
al., 1997). As an example, the internet-accessible program
COMPARE (Paull ez al., 1989, 1995) uses Pearson correlation
coefficients (PCCs) to extract compounds with screening
patterns similar to a ‘seed’ compound. Applications of back-
propagation neural networks (Weinstein er al, 1992) and
Kohonen self-organizing maps (Koutsoukos et al, 1994)
have demonstrated varying success when predicting MOAs
and grouping compounds based on similar activity patterns.
These methods also complement the COMPARE program by
identifying clusters of ‘seed’ compounds, thus addressing the
important question of whether a ‘seed’ compound appears on
the lists of highly correlated activity patterns for all other
‘seeds’ in the data set. Statistical and artificial intelligence
techniques, including principal component analysis, hier-
archical cluster analysis, stepwise linear regression and
multidimensional scaling, have begun to be applied to
the NCI’s screening data (van Osdol et al., 1994; Shi et al.,
1998a).

Structurally similar compounds can have similar physico-
chemical properties and thus are thought to have similar
biological activities, consistent with the similarity property
principle (Johnson and Maggiora, 1990). For example, a
dramatic coherence between molecular structures and activ-
ity patterns was observed for 112 ellipticine analogs (Shi ez al.,
1998c). Detailed crystallographic and NMR studies further
support the similarity property concept by demon- strating
that ligand-receptor interactions are characterized by
complementary shapes and chemical characteristics (Janin
and Chothia, 1990; Clackson and Wells, 1995; Schreiber and
Fersht, 1995; D.G. Covell ef al., manuscript in preparation).
Cell-based screening assays represent a complex array of
interactions that is monitored as cell growth or killing [e.g.

log(Gly)]. Differential activity patterns in these measure- -

ments can result from the activity of compounds that interact
well, poorly or not at all with one or many targets within the
panel of cell types. Earlier attempts to establish corres-
pondences between activity patterns, MOAs and chemical
structure found general clustering (i) for compounds of
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similar chemical structure, and (ii) for compounds classi-
fied as having a similar mechanism of action (MOA), yet
having diverse chemical structures (Shi ez al., 1998a). Distant
clustering was also found for compounds similar in chemical
structure but having different MOAs (Shi et al, 1998a).
Earlier studies by Paull ef al. (Paull et al., 1995; O’Connor et
al., 1997) demonstrated that anticancer agents having similar
functional groups (e.g. chloroethylating agents, platinum
analogs and nitrosoureas) produce similar activity patterns in
cell-based screens. However, there are some compounds that
display a relatively strong structural similarity, and yet exhibit
drastically different activity patterns. Alternatively, com-
pounds with similar activity patterns can have little structural
correspondence to one another.

The present analysis identifies clusters of anticancer
compounds based on their log(Gls) activity patterns in NCI’s
data for 60 tumor cell lines. The analysis is performed on the
set of 122 standard anticancer agents available in the NCI’s
Developmental Therapeutic Program’s database. Here we
adopt singular value decomposition (SVD) (Harary, 1971;
Golub and Loan, 1989; Berry et al., 1995; Liu, 1997; Bahar et
al., 1998) and hierarchical clustering methods (Sneath and
Sokal, 1973) to cluster the chemotherapeutic agents. Com-
pounds clustered with these methods are to be compared by
their assigned MOAs and their structural similarities.

Methods

Variance-based measures of similarity rely on the spread
in a data set to determine membership within a cluster.
Principal component analysis (PCA), SVD, D-optimal design
and k-nearest neighbor clustering are commonly used as
variance-based methods. These have as their overall goal the
minimization of the noise-to-signal ratio (Giuliani et al.,
1998). The SVD approach has been shown to be a powerful
method to filter noise and enhance the information content
of the original data (Harary, 1971; Golub and Loan, 1989;
Berry et al., 1995; Liu, 1997). Similar to PCA, SVD defines
rotation of axes (principal components) so that columns in
the data matrix maximize their standard deviation with
respect to other columns in the data set. This transformation
yields a new space where the columns of data exhibit maxi-
mum variance (i.e. minimum correlation) with respect to one
other. The original data can be re-expressed approximately as
a linear combination of a few dominant principal compon-
ents. This new space, referred to as the SVD space, has
previously been effectively used, for example, to classify
words within texts (Berry et al., 1995) and protein structures
with respect to their amino acid composition (Bahar et al.,
1998).

SVD analysis is used here to classify anticancer agents by
examining their log(Gls,) values in the 60-dimensional space
of the cancer cell lines. This space is transformed into an SVD
space, where the anticancer agents are represented by activity




arrays emphasizing their differences. The compounds are
clustered on the basis of their pairwise distances in SVD
space, by using hierarchical clustering algorithms (Sneath and
Sokal, 1973). The calculations discussed below have
been coded into a Fortran program, which is available upon
request. Many of these calculations can also be completed
using the SAS library of utilities.

In general, the SVD of a given matrix A yields three
matrices A, U and V which comprise (i) the singular
eigenvalues A; of A, organized in ascending order in the
diagonal matrix A; (ii) the orthonormal transformation
matrix U that defines the relationship between the original
coordinate frame and the SVD frame; and (iii) the normal-
ized representation, VT, of the original matrix in the SVD
space. A can thus be decomposed, hence the term ‘singular
value decomposition’, into the product of these three
matrices

Aan = UmxmAmmemen (1)

where the subscripts denote the dimensions of the two-
dimensional matrices and the superscript T indicates the
transpose. In general, the columns of A each represent a
given quantity (here anticancer agents) characterized by m
properties (activity patterns for 60 cell lines), whereas those
of the product AVT are the same quantities expressed in the
SVD frame which best describes the similarities/differences
between these quantities on the basis of their n properties.
In the present application of the SVD method to anticancer
compound screening data, each column of A, conveniently
denoted as a;, is a 60-dimensional vector describing the
activity pattern of a given drug i (1 < i < 122), expressed in
terms of the log(Gls) values observed against the 60 tumor
cell lines. Therefore the SVD of a 60 X 122 A matrix is per-
formed, using the data set of n = 122 anticancer agents
screened against m = 60 cell lines. The a; element of the A
matrix is then row and column normalized by first sub-
tracting the column average [i.e. the average log(Gls) value
for each compound] and then subtracting the row average (i.e.
the average for each cell line). The resulting relative cytotoxic
potencies are thought to eliminate the differences arising
from the generic characteristics of the particular cell lines
and permits us to emphasize more clearly the differences
among activity patterns of the anticancer agents. The activity
pattern of the ith agent in the SVD space is used to define
its distances from the activity patterns for the remaining
(n = 121) compounds. The activity pattern of the ith agent
in SVD space is represented by the ith column v"; of VT
pre-multiplied by A, and designated as ax = Av"; such that
the SVD distance between agents i and j is

di = [(a* - a*) (a7 — a)]'" = [(AvTi— AVT) (AvTi— AvT]2

SVD analysis of cell screening data

These SVD distances constitute the basic measure for
clustering the anticancer agents into groups in the present
analysis. The analyzed set includes 122 compounds with six
putative MOAs: 35 alkylating agents, 24 antimitotic agents,
16 topoisomerase I inhibitors, 19 topoisomerase I1 inhibitors,
16 RNA-DNA antimetabolites and 13 DNA antimetabolites.

Results

The results of clustering compounds according to their
pairwise SVD distances are listed in Table I. Clusters ob-
tained from pairwise distances place compounds with the
most similar activity patterns adjacent to one another. Using
this approach, clusters are ordered such that compounds with
the greatest and least similarities in their SVD distances are
presented first and last, respectively, in Table I. Figure 1
displays the 2-D structures of the compounds within each
cluster.

Statistical clustering of these patterns was obtained using
the SAS/STAT clustering algorithms. The cubic clustering
criterion (CCC) was selected to determine cluster member-
ship. This criterion estimates the number of clusters based
on minimizing the within cluster sum of squares. The CCC
calculation generates a rough approximation to a ‘goodness
of fit’ measure under the null hypothesis that the data are
sampled from a uniform distribution on a hyperbox (P-
dimensional right parallelpiped). A t-test statistic with one
degree of freedom (¢ = 3.078, P < 0.05, n = 1) is generated for
testing the null hypothesis that a compound’s SVD distance
pattern is not different from a given cluster (i.e. cannot be
excluded from the cluster). This method has been shown to
help determine cluster number for both univariate and multi-
variate data with small sample sizes (n ~ 20). See SAS
Technical Report A-108 for additional details (SAS, 1992).

The results of this analysis find that the 122 standard
agents can be clustered into 25 groups, labeled Groups 1-25,
and listed in Table 1. Fifteen of these groups have at least
two members, while the final 10 groups consist of a single
agent. Figure 1 displays the molecular structures of these
compounds, ordered according to the Groups 1-25 in Table .
The list of compounds in each group in Table I includes their
putative MOAs and characteristic structural/functional
groups. Multiple compounds within each group cannot be
further subdivided on the basis of their log(Gls,) patterns.
However, structural similarities within clusters can be easily
found by inspection of Figure 1.

Group 1 is composed of 38 compounds consisting pre-
dominantly of alkylating agents (23 compounds), topoisomer-
ase II inhibitors (nine compounds), DNA antimetabolites
(five compounds) and a single RNA-DNA antimetabolite.
Alkylating agents are antitumor drugs that act through
covalent binding of their alkyl groups to cellular molecules
(Pratt et al., 1994; Chabner and Longo, 1996). Many of these
are proposed to attack the N-7 or O-6 atoms on guanine in
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Table I

Compounds ordered according to pattern similarity

Cluster Name NSC MOA Structural group Cluster Name NSC MOA Structural group
1 teroxirone 296934 1 epoxide 2 menogaril 269148 4 anthracene—
1 AZQ 182986 1 aziridine " daunorubicin
1 CHIP 256927 1 platinum
1 cis-platinum 119875 1 platinum 3 mitomycin C 26980 1 mitomycin
1 carboplatin 241240 1 platinum 3 porfiromycin 56410 1 mytomycin
1 hepsulfam 329680 1 alkane sulfonate 3 camptothecin 94600 3 camptothecin
I Yoshi-864 102627 1 alkane sulfonate 3 camptothecin 95382 3 camptothecin
1 Busulfan 750 1 alkane sulfonate derivative
1 cyclodisone 348948 1 alkane sulfonate 3 camptothecin 107124 3 camptothecin
1 clomesone 338947 1 alkane sulfonate derivative
1 guanazole 1895 6 3 m-AMSA (amsacrine) 249992 4 anthracene
1 pyrazoloimidazole ~ 51143 6 3 camptothecin 295501 3 camptothecin
1 ftorafur (pro-drug) 148958 5 derivative
! hydroxyurea 32065 6 hydroxyurea 3 camptothecin 606173 3 camptothecin
1 melphalan 8806 1 nitrogen mustard derivative
! chlorambucxl 3088 ! nitrogen mustard 3 camptothecin 364830 3 camptothecin
1 br-propiony! 25154 1 nitrogen mustard derivati
piperazine 3 erlvatwﬁ i 374028 3 heci
. tot
1 fluorodopan 73754 1 nitrogen mustard ((:ian}p otheait camptothecin
1 mitozolamide 353451 1 nitrogen mustard er}vatlve . .
. . . 3 aminocamptothecin 603071 3 camptothecin
1 BCNU (carmustine) 409962 1 nitrosourea-nitrogen . .
mustard 3 camptothecin 606172 3 camptothecin
. . . derivative
! f::lr;::z;amom 172112 1 nitrogen mustard 3 camptothecin 606985 3 camptothecin
. . derivative
! methyl CCNU 95441 ! Irgflrscz:élrea—mtrogen 3 camptothecin 610457 3 camptothecin
. . . derivative
1 chlorozotocin 178248 1 zltlx:iz(sélrea—mtrogen 3 camptothecin 610458 3 camptothecin
. . derivative
! PCNU 95466 ! zltlrsc;;c;;rea—mtrogen 3 camptothecin 618939 3 camptothecin
1 CCNU 79037 1 nitrosourea-nitrogen ‘derivative
mustard . :
I 3-HP 95678 6  hydrazinecarbonthio- 4 Za“?pt‘?th“‘“ 2499103 camptothecin
amide 4 mptothect 606947 3 totheci
1 5-HP 107392 6  hydrazinecarbonthio- fia".‘p othecin camptothecin
amide 4 mptotheci 606499 3 heci
1 asaley 167780 1 nitrogen mustard Zan‘lp othecn camptothecin
I amonafide 308847 4 - . o i 610456 3 e
1 hycanthone 142982 1 - fii?il\lz);t(::/eecm camptothecin
! pyrazoloacridine 366140 4 acridine 4 camptothecin 610459 3 camptothecin
(PZA) derivati
1 oxanthrazole 349174 4 anthracene 4 erlvz: IZE . 629971 3 heci
1 anthrapyrazole 355644 4 anthracene can}pc? ecin camptothecin
derivati derivative
erivative
1 rubidazone 164011 4 anthracene dione . .
1 doxorubicin 123127 4 anthracene- 5 carr_1pt9thecm 176323 3 camptothecin
(Adriamycin) daunorubicin 5 derlvitlrg . 295500 3 heci
1 daunorubicin 82151 4 anthracene- camplotacein camptothecin
daunorubicin derivative
! deoxydoxorubicin 267469 4 anthracene- 6 VM-26 (teniposide) 122819 4 podophyllotoxin
daunorubicin 6 mitoxantrone 301739 4 anthracene
1 VP-16 141540 4 podophyliotoxin
5 thio-tepa 6396 1 aziridine 7 aphidicolin glycinate 303812 6 aphidicolin
2 triethylenemelamine 9706 1 aziridine . .
2 dianhydrogalactitol 132313 1 epoxide 8 tetraplatin 363812 1 platinum
. g 8 carboxyphthalato- 271674 1 platinum
2 nitrogen mustard 762 1 nitrogen mustard .
o . platinum
2 uracil nitrogen 34462 1 nitrogen mustard L . .
mustard 8 acivicin 163501 5 amino acid analog
2 piperazine analog 344007 1 nitrogen mustard 8 dl(v;hlorauyl lawsone 126771 5 naptl}oqulnone
. L . . 8 thioguanine 752 6 guanine
2 piperazinedione 135758 1 piperazine 3 Ipha-TGDR 71851 6 .
2 camptothecin 643833 3 camptothecin a'pha- guanine
derivati 8 beta-TGDR 71261 6 guanine
erivative O .
. 8 sine 118994 6
2 camptothecin, 100880 3 camptothecin mmosine guanine
Na sal glycodialdehyde
a salt 8 5-azacytidine 102816 S cytidine
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Table I (continued)

Cluster Name NSC MOA Structural group
8 cyanomorpholino- 357704 1 anthracene-
doxorubicin daunorubicin
8 morpholinodoxo- 354646 3 anthracene-
rubicin daunorubicin
8 N,N-dibenzyl 268242 4 anthracene-
daunomycin daunorubicin
9 macbecin II 330500 6 lactone
9 rhizoxin 332598 2 macrolide
9 maytansine 153858 2 macrofactam
9 vinblastine sulfate 49842 2 vinca alkaloid
9 halichondrin B 609395 2 polyether macrolide
9 trityl cysteine 83265 2 triphenyl
9 bisantrene HCL 337766 4 anthracene
9 dolastatin 10 376128 2 modified peptide
10 L-alanosine 153353 5 aspartate analog
‘10 N-(phosphonoacetyl)- 224131 5 aspartate analog
L-aspartate
10 5-fluorouracil 19893 5 uracil analog
10 brequinar 368390 5 folate analog
11 taxol 125973 2 taxane
11 taxol derivative 608832 2 taxane
12 colchicine derivative 33410 2 colchicine
12 allocolchicine 406042 2 colchicine
12 thiocolchicine 361792 2 colchicine
13 colchicine 757 2 colchicine
13 vincristine sulfate 67574 2 vinca alkaloid
14 methotrexate 740 5 folate analog
14 methotrexate 174121 5 folate analog
derivative
15 L-ornithine 633713 5 folate analog
15 trimetrexate 352122 § folate analog
16 thiopurine 755 6 purine
17 5-aza-2'-deoxycytidine 127716 6 cytidine
18 2'-deoxy-5- 27640 6 uridine
fluorouridine
19 ara-C 63878 6 uridine
20 5,6-dihydro-5- 264880 5 cytidine
azacytidine
21 pyrazofurin 143095 5 pyrazofurin
22 cyclocytidine 145668 6 cytidine
23 Baker’s antifol soluble 139105 S folate
24 an antifol 623017 5 folate analog
25 aminopterin 184692 5 folate analog
derivative
25 aminopterin 134033 5 folate analog
derivative
25 aminopterin 132483 5 folate analog
derivative

SVD analysis of cell screening data

the DNA major groove, and to cross-link DNA strands (Pratt
et al, 1994; Chabner and Longo, 1996). Cross-linked
products are removed by an alkyltransferase DNA repair
enzyme, via a repair mechanism known to be deficient in
certain tumors. The first two members of this group are
compounds bearing two or more aziridine or oxirane groups
(296934 and 182986). These are analogs of the putative
closed-ring intermediates of the nitrogen mustards, but are
believed to be less reactive (Chabner and Longo, 1996). Three
of the five platinum containing compounds are found next
within this group (119875, 256927 and 241240).‘The next set
of compounds in this group is composed of alkyl alkane
sulfonates (329680, 102627, 750, 348948 and 338947).
Busulfan (750) has been shown to attack the N-7 atom of
guanine, but its ability to cross-link DNA is not certain. Pyra-
zoloimidazole (51143) and guanazole (1895) appear next,
and are highly reactive DNA antimetabolites with nitrogen
containing ring structures. The prodrug ftorafur (148958)
appears next. The remaining members of Group 1 fall into
two structural classes: the first composed of nitrosoureas,
either alone or in combination with nitrogen mustards or
guanidine groups (32065, 8806, 3088, 25154, 73754, 353451,
409962, 171112, 95441, 178248, 95466, 79037, 95678, 107392
and 167780), and the second composed of anthracyclines,
anthracenediones and epipodophyllotoxins (308847, 142892,
366140, 349174, 355644, 164011, 123127, 82151, 267469 and
141540). The nitrosourea compounds bearing both chloro-
alkylaﬁng and carbamoylating (carbamoyl: ~R-N-C=0)
groups can produce interstrand cross-links in DNA by
preferentially attacking the O-6 position on guanine. The
greater antitumor activity of the compounds in the modified
nitrosourea class, when compared with the parent nitroso-
urea, has been attributed partly to their greater lipophilic
character (Chabner and Longo, 1996). The latter subclass of
compounds in this group are doxorubicin analogs, thought to
inhibit DNA topoisomerase II and protein kinase C mediated
signal transduction pathways (Chabner and Longo, 1996).
The structural similarity of these latter compounds originates
in their anthracene scaffold. The various congeners in this
group do not appear to effectively affect growth inhibitory
behavior, since they all exhibit similar activity patterns in the
SVD space when compared with the complete set of 122
compounds. Three of the compounds within the group of
anthracyclines share a dimethyl or diethyl amine group
(308847, 142892 and 366140). Amonifide (308847) is a topo-
isomerase II inhibitor that acts as a DNA intercalator or
binder (Chabner and Longo, 1996), while pyrazoloacridine
(366140) and hycanthone (142982) share an acridine moiety
which may contribute to their similar activities.

The second group of compounds shares structural
similarity with members of Group 1, but has SVD distance
patterns different from the first group. Three of these
compounds have aziridine or oxirane groups (6396, 9706 and
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Figure 1
Two-dimensional representations of the chemical structures of the 122 compounds analyzed in this study. Compounds are ordered into
25 groups as described in the text. Structurally similar compounds are displayed together within each group. This figure has been

prepared using the ISIS/DRAW software package.

132313), four compounds are nitrogen mustards (762, 34462  100880) and piperazinedione (135758), two of these com-
and 344007) and one is a doxorubicin analog (269148). The  pounds exhibiting an alkylation capacity probably because of
diepoxides in the oxirane, dianhydrogalactitol (132313), are their chloride groups.

presumably responsible for its antitumor activity. Also within The third group (Group 3) comprises 16 compounds,
this group are two camptothecin analogs (643833 and including two mitomycins (26980 and 56410), the only known
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natural compounds containing an aziridine ring (Chabner
and Longo, 1996). These compounds alkylate guanine at the
N-2 position in the DNA minor groove (Chabner and Longo,
1996) and differ from one another only by a methyl group.
With the exception of the topoisomerase II inhibitor 249992,
the remaining compounds in this group are camptothecin
analogs that are thought to inhibit the DNA gyrase enzyme
topoisomerase 1. The strong structural similarity within the
camptothecin derivatives is thus also exhibited in their SVD
distance patterns. Groups 4 and 5 consist of six and two
camptothecin analogs, respectively. The cellular activities of
the compounds in these two groups are sufficiently different

from the larger set in Group 3 to include them as separate
groups. The structural features responsible for this different
activity are not clearly apparent. These compounds may
exhibit similar activity patterns on the basis of solubility, or
cell permeability.

Group 6 consists of only two compounds, the podo-
phyllotoxin Teniposide (122819) and the topoisomerase II
inhibitor 301379. Although both of these compounds share
structural similarity and activity patterns with the alkylating
compounds in Group 1, their location adjacent to the group
of topoisomerase I agents suggests that their structural differ-
ences produce a distinctly different activity pattern.
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Cluster 7 is a singlet, composed of aphidicolin glycinate
(303812). Although this compound is thought to be a DNA
polymerase inhibitor, it shares structural similarity with the
camptothecin family, and its placement in a cluster near the
camptothecin analogs in Groups 3, 4 and 5 suggests that
its cellular activity may also mimic that of topoisomerase I
inhibitors.

Twelve compounds are found in Group 8. Included in this
set are the platinum containing, DNA intercalating com-
pounds tetraplatin (363812) and carboxyphthalatoplatinum
(271674). These compounds contain a stabilizing cyclohexane
group that may contribute to their distinctive activity patterns
when compared with the three platinum containing com-
pounds in Group 1. Seven nucleoside analogs appear within
this group (163501, 126771, 752, 71851, 71261, 118994 and
102816), most of which share a guanine or uracil moiety linked
to a pentose. These compounds are thought to be directly
incorporated into DNA (Myers et al., 1997). The antibiotic
acivicin (163501) and dichloroallyl-lawsone (126771) are
thought to act as an inhibitor of pyrimidine biosynthesis, and
their location within the family of nucleoside analogs is
reasonable. The three doxorubicins that complete this group,
morpholinodoxorubicin (354646), cyanomorpholino-doxo-
rubicin (357704) and N,N-dibenzyl duanomycin (268242),
share a unique hexopyranosyl moiety. The two platinum
containing alkylating agents and the three doxorubicin
analogs act by directly damaging DNA, while the remaining
compounds in this group are inhibitors of nucleotide syn-
thesis, acting as DNA/RNA antimetabolites.

The antitubulin agents are found to cluster into five groups.
The first group (Group 9) is composed of six antitubulin
agents (330500, 332598, 153858, 49842, 609395 and 376128),
one topoisomerase II inhibitor (337766) and trityl cysteine
(83265). The second group (Group 11) includes taxol
(125973) and a taxol derivative (608832). The third and
fourth groups (Groups 12 and 13, respectively) include the
colchicines (757, 67574, 406042, 361792) and 33410. These
compounds show weak pattern similarity to other anticancer
agents, which suggests that these antitubulin agents share
similar growth inhibitory mechanisms in the cell screen.

Group 10, which has an activity pattern that places it
between the antitubulin Groups 9 and 11, consists of a
nucleoside analog (19893), two amino acid analogs (153353
and 224131) and a folate analog (368390). Group 10 is the
first cluster of compounds that lack close SVD distances to
members of Groups 1-8. Thus its activity pattern lacks near
SVD distances to groups containing alkylating agents and
topoisomerase I and II inhibitors, with close SVD distances
restricted mostly to members within its group. As will be
shown later, this type of activity pattern may reflect agents
that primarily act as inhibitors of nucleotide biosynthesis,
rather than as DNA damaging agents.

An equally distinct activity pattern is also found for the

»

antifolate compounds composing Groups 14 and 15. Group
14 consists of methotrexate (740) and the folate analog
(174121), while Group 15 includes the antimetabolites 633713
and 352122. It should be noted that in general, clustering of
compounds in this subgroup is based largely on their SVD
distance dissimilarities, rather than similarities, to the other
members in the set of 122 compounds.

Groups 16-22 all comprise single compounds, all of which
are nucleosides that act as antimetabolites of nucleotide bio-
synthesis. As with the folate analogs discussed above, their
activity patterns are sufficiently unique for these compounds
to share no pattern similarities with any of the standard 122
agents.

Folate analogs complete the final three groups. Groups 23
and 24 consist of single compounds (139105 and 623017,
respectively), while Group 25 consists of three folates
(184692, 134033 and 132483). These latter RNA-DNA anti-
metabolites have alcohols or ethers substituted at positions
C-7 or C-11 of the parent compound that may contribute to
their increased water solubility and unique activity pattern.

The results described here are consistent with earlier
classifications by Koutsoukos et al (1994) and van Osdol
et al. (1994) that divided these compounds into two large
clusters. Our analysis finds a similar division of compounds,
while providing further subclustering of compounds within
these two major divisions. The largest division consists of
compounds with the most similar activity patterns, com-
pounds which appear at the top of Table I, comprised
primarily of DNA-damaging agents (Groups 1-8). Com-
pounds in the lower portion of Table I comprise the second
major division and act by targeting a biosynthetic pathway or
part of the mitotic machinery.

Each of the groups described above can be further
examined for their average activity patterns across the 60
tumor cell lines. Figure 2 displays the mean activity for the 25
different groups across all 60 tumor cell lines. These results
provide an indication of the diversity of activity patterns
associated with the 25 clusters identified above, and can be
used to identify which groups of compounds are more or less
active against individual cell lines or within panels of cells.
The results in Figure 2 are displayed according to the cluster
order in Table I, from Group 1 to Group 25. The average
sensitivity of the 60 tumor cells against the compounds
within each cluster is indicated by color. Tumor cells with
progressively more sensitive activity patterns when compared
with their group averages are shown in yellow to orange to
red. Cells with progressively less sensitivity are shown from
pale blue to dark blue. Cells with activity patterns near their
group averages are shown in light green.

Examination of the mean activity patterns for the 25
clusters obtained from the cubic clustering algorithm in the
SAS Technical Report (SAS, 1992) can be used to qualitative-
ly assess differences between each group. The agents within
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Figure 2

Average activity across the 60 cell lines for compounds in each of the 25 groups. Panels of cells are ordered from bottom to top as
follows: CNS, PROSTATE, MELANOMA RENAL, LEUKEMIA, OVARIAN, BREAST, COLON and NLC. Groups with a positive mean activity
pattern are displayed from least, to intermediate, to greatest, in orange, red and brown, respectively. Groups with negative mean activity
patterns are shown, from least to greatest, in light blue, blue and dark blue, respectively. Groups with mean activity patterns near zero

are shown in green.
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Groups 1-3 exhibit a uniformly weak mean activity pattern
across all 60 cell types, as indicated by the near-baseline light
green color for all cell types. Groups 4 and 5 begin to exhibit
a more diverse activity pattern, with a greater sensitivity
(orange color) to the panel of CNS cells, as well as selected
RENAL, LEUKEMIA and BREAST cells. Group 4 is com-
posed of five camptothecin analogs that have an apparent,
albeit weak, selectivity for the CNS panel of cells, with a
strong activity against the single BREAST-ADR cell line.
Groups 6 and 7 also have a relatively uniform activity pattern
with the exception of an insensitivity to RENAL-ACHN,
RENAL-UO-31 and OVARIAN-OVCARS.

Group 8 has a diverse activity pattern with high sensitivity
to MEL-SKMEL2, BREAST-HS578T, COLON-COLO205,
COLON-HCC2998, COLON-HT29 and with low sensitivity
to RENAL-ACHN, RENAL-CAKI-1, RENAL-UO-31,
OVARIAN-OVCAR4 and BREAST-ADR. Groups 9-13, the
antitubulin active agents, display high sensitivity to most of
the COLON tumor cells, and a variable sensitivity to
BREAST and MELANOMA tumor cells. Groups 14-16
showed a low sensitivity within the BREAST panel and
variable sensitivity to cells within the COLON panel. Group
17 displays a consistent sensitivity against most of the cells
within the BREAST and COLON panels. The single com-
pound in Group 18 is uniformly sensitive to the BREAST
panel, while Groups 19-25 exhibited a widely diverse range of
activity patterns, with both sensitive and insensitive cellular
activity patterns. Cells with the least sensitivity to the 122
standard agents are: NLC-EKVX, NLC-H226, BREAST-
T47D, -HS578T and -MDA231, OVARIAN-OVCARA4,
‘RENAL-RXF393 and CNS-SNB75.

Our analysis can be used to cluster members of the 60 cell
panel according to their response to the 122 standard anti-
cancer agents. In contrast to the previous analysis, where 122
agents were examined for their activity pattern across the 60
cell lines, a similar analysis can be performed whereby the
60 cell lines are examined for their activities against the 122
standard agents. Clustering of the cell types on this basis
can be used to identify each cell type’s differential response
to these standard anticancer agents. Fifteen clusters are
obtained using the cubic clustering analysis (CCC) within the
SAS Technical report. Figure 3 displays a cladogram for
clusters obtained in this analysis, with each branch labeled
and color coded according to cell type. Cells are initially
separated into two major branches, with one branch con-
sisting of 15 cell types, the remaining 45 cell types appearing
in the other major branch.

The smaller of the two major branches appears at the
rightmost portion of Figure 3, and is subdivided into four
clusters. The largest of these four clusters consist of RENAL
cell types, with UO-31, 786-0, ACHN, CAKI-1 and RXF-393
along with two MELANOMA cell lines, LOX-IMVI and
M14. Four of the five RENAL cells in this panel are know to
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exhibit multidrug resistance (MDR). MDR is a resistance
modulator for many chemotherapeutic agents associated
with either an increased expression of the P-170 membrane
glycoprotein MDRI1 or the presence of the multidrug
resistance protein (Lee ez al., 1994; Alvarez et al., 1995). Both
of these mechanisms act by lowering the effective drug
concentration, enhancing drug efflux (Chabner and Longo,
1996) and reducing drug efficacy. The remaining three sub-
branches within this major branch are composed of four
LEUKEMIA, two NLC, one CNS and one MELANOMA
cell type. The LEUKEMIA cell line has the greatest average
sensitivity in mean deviation (Ax = [log Glsy] — <log GIsp>) for
the 122 standard agents. The LEUKEMIA cell type SR
appears as a singlet, thus having no comparable cell type with
a similar response to the 122 standard agents.

The larger of the two major branches found in this analysis
is clustered into four sub-branches, which are further divided
into 17 branches. The leftmost sub-branch (as viewed in
Figure 3) is divided into seven clusters. The largest cluster in
this group consists of seven cell types, appearing as the
leftmost branch of the cladogram. This cluster includes three
OVARIAN, two NLC and one MELANOMA cell type. Ad-
jacent to this cluster are four branches comprising only a
single cell type: (RE)SN12C, (CNS)SF-268, (BR)BT-549 and
(ME)MALME-3M. Two BREAST cell types (T-47D and
MCF7) along with the LEUKEMIA cell line RPMI-8226
appear in the next cluster. Membership in this leftmost
sub-branch is completed by a cluster comprising only two
OVARIAN cell types (SK-OV-3 and OVCAR-8) and the
singlet (NLC)HOP-92. The remaining clusters in this major
sub-branch consist primarily of NLC, COLON, BREAST
and MELANOMA cell types. Within the clusters formed by
these cell types, a clear separation according to these panels is
not apparent based on their response to the 122 standard
agents. An apparent coherence between the COLON,
BREAST and LEUKEMIA panels is clearly indicated;
however, the basis for this clustering is not evident. These
results indicate that many tumor cell types, both within and
between different panels, exhibit similar sensitivities to the
set of 122 compounds studied here. Additional studies with
a larger set of test compounds will be needed to more
thoroughly determine which cell types share the most similar
response patterns.

Prediction of MOAs

Mechanism of action classifications can be based on
applications of a wide range of statistical tools (Harary,
1971; Golub and Loan, 1989; Berry et al., 1995). The results
in Table I show that there is a substantial similarity between
the clusters of compounds based on Gls activity patterns
and their classification based on their previously assigned
MOAs. Yet, subclusters interspersed between clusters of a
given MOA are observable, which call for a more systematic
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Figure 3

Cladogram of SVD distances for the 60 cell types determined from the activity data for the standard 122 anticancer agents. Branch labels
are colored according to cell panels: black, non-small cell lung carcinoma (NLC); light green, COLON; magenta, LEUKEMIA; red,
OVARIAN; dark green, RENAL; brown, MELANOMA; light blue, PROSTATE; black, CNS. (Note that the color black has been used for both
NLC and CNS.) The abbreviations for each panel also appear in the label for each branch. The GROWTREE utility from the GCG software
package has been used to generate this figure. Cluster assignments, from left to right, are as follows: Cluster 1: (ME)UACC-62,
(OV)OVCAR-5, (OV)OVCAR-4, (NLC)NCI-H322M, (OV)IVGROV1, (NLC)A549/ATCC, (RE)SN12C. Cluster 2: (CNS)SF-268. Cluster 3:
(BR)BT-549. Cluster 4: (M\E)MALME-3M. Cluster 5: (BR)T-47D, (BR)MCF?7, (LE)RPMI-8226. Cluster 6: (OV)SK-OV-3, (OV)OVCAR-8. Cluster
7: (NLC)HOP-92. Cluster 8: (ME)SK-MEL-5, (NLC)EKVX, (RE)TK-10, (CNS)SNB-19, (CO)SW-620, (LE)K-562. Cluster 9: (CO)HCT-15.
Cluster 10: (PR)PC-3, (BR)MDA-231. Cluster 11: (BR)HS-578T, (CO)HT29. Cluster 12: (BR)MDA-N, (BR)MDA-435, (OV)OVCAR-3,
(CO)COLO-205, (CO)HCC-2998, (CNS)SF-295. Cluster 13: (PR)DU-145. Cluster 14: (NLC)NCI-H226, (NLC)NCI-H23, (RE)A498,
(ME)SK-MEL-28, (NLC)NCI-H460, (CNS)U251. Cluster 15: (CNS)SNB-75. Cluster 16: (ME)SK-MEL-2, (CO)KM12, (CO)HCT-116. Cluster
17: (BR)NCI/ADR. Cluster 18: (ME)M14, (RE)RXF-393, (MEL)LOX-IMVI, (RE)CAKI-1, (RE)ACHN, (RE)786-0, (RE)UO-31. Cluster 19: (LE)-
MOLT-4, (LE)CCRF-CEM, (ME)UACC-257, (NLC)HOP-62. Cluster 20: (LE)SR. Cluster 21: (CNS)SF-539, (LE)HL-60(TB), (NLC)NCI-H522.

analysis of the degree of correlation between the Gls, data
and MOAs. To this aim we performed the following analysis:
mean activity fluctuation vectors in the SVD space were
found for each of the six MOAs using

<ax>poa = Za#/ Nyvoa )]

Here Nyoa is the number of agents exhibiting a given MOA,
and the summation is performed over this particular subset
of agents. The average activity patterns are thus obtained for
each MOA. The departure of the behavior ax of individual
agents from these averages are examined for an assessment of
the accuracy of the MOAs assigned to the different agents.
The deviation of each drug from the mean activity fluctu-
ation vector for the six MOA classes is thus

Aa*poa= 3 — <a*>poa 3)

The smallest of the six distances obtained for each drug is
used to identify its most likely MOA. Application of this test
to all compounds in the training set of 122 standard agents
shows that the correct MOAs are assigned with an average
accuracy level of 96.7%. Column 2 in Table II summarizes
the results for the six different MAOs. Weinstein et al. (1992)
obtained an accuracy level of 91.5% by using a neural net-
work model and 85.8% by linear discriminant analysis.

The accuracy of the MOA assignments for anticancer
agents has additionally been examined by jack-knife tests.
The jack-knife test, also called the leave-one-out test (Mardia
et al., 1979), is a method often utilized for small samples
which cannot be divided into training and testing sets without
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Table IT
Performance of SVD analysis for determining MOA*

Table IIT
MOA classification for incorrectly predicted MOAs

MoA*? Success %
Training set Prediction set

1(35) 97 97

2(13) 92 85

3(24) 96 96

4(15) 100 87

5(19) 100 63

6(16) 94 63

Mean (122) 96.7 84.4

Each % success represents the correctly predicted compounds for each
MOA [e.g. all 15 of the topoisomerase II inhibitors were predicted
correctly in MOA class 4 for the training set, while 87% (n = 13 of 15)
of these agents were correctly predicted in the jack-knife procedure].
21, alkylating; 2, antimitotic; 3, topoisomerase I inhibitors; 4,
topoisomerase II inhibitors; 5, RNA-DNA antimetabolites; 6, DNA
antimetabolites.

loss of information. In this procedure each compound to be
tested is removed from the training data set and the identi-
fication of the activity fluctuation Aazkyoa for each MOA
is carried out using the Gls, data of the remaining 121 drugs.
The most probable MOA of the test compound is then
predicted using the same distance criteria (equation 3), with
the basic difference that the mean fluctuation vectors
<a*>poa are now extracted from a set of data excluding the
test compound. The average accuracy level reached by this
method was 84.4%. A summary of these results is presented
in the third column of Table II. The mispredicted compounds
and their predicted MOAs are listed in Table III. Most of the
19 mispredicted compounds were classified as topoisomerase
IT agents or DNA-RNA antimetabolites, with the majority of
these agents predicted to behave as alkylators. Since topo-
isomerases act to create covalent damage in DNA, their
functional activity may be similar to alkylating agents.

Discussion

NCI’s 60 cell line screening assay provides a measure of
growth inhibition for human cancer cells exposed to
candidate anticancer compounds. Activity data accumulated
in these screens can be used to group agents that exhibit
similar activity patterns across a broad variety of tumor cell
lines. Compounds grouped according to pattern similarities
can be further examined for possible relationships between
their activities, their chemical substructures and/or their
MOAs. The results presented here apply the standard
statistical method of SVD to the log(Gls) data to define
measures of distances between compounds in a space that
best distinguishes their similarities and dissimilarities.
Hierarchical clustering of these SVD-derived distances
divides these 122 compounds into 25 groups. The first eight
groups are predominantly formed by DNA-damaging agents,
while the latter 17 groups (9-25) mostly consist of agents that
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NSC no. Name Assigned  Predicted
MOA MOA
357704 cyanomorpholinodoxorubicin 1 3
153858 maytansine 2 6
67574 vincristine sulfate 2 6
354646 morpholinodoxorubicin 3 4
268242 N,N-dibenzyl daunomycin 4 1
366140 pyrazoloacridine 4 1
148958 Ftorafur 5 6
102816 5-azacytidine 5 4
264880 5,6-dihydro-5-azacytidine 5 1
174121 methotrexate derivative 5 6
139105 Baker’s soluble antifol 5 2
132483 aminopterin derivative 5 3
623017 an antifol 5 6
63878 ara-C 6 1
27640 2'-deoxy-5-fluorouridine 6 1
127716 5-aza-2'-deoxycytidine 6 4
330500 Macbecin II 6 1
95678 3-HP 6 1
32065 hydroxyurea 6 1

inhibit nucleic acid biosynthesis or mitosis. Compounds in
the first class comprise MOAs assigned as alkylators, and
inhibitors of topoisomerases I and II, along with a few DNA
antimetabolites, while the latter class is dominated by anti-
mitotic agents and antimetabolites.

DNA damaging agents (Groups 1-8), when observed
together, exhibit strongly similar activity patterns. Agents
such as DNA alkylators and DNA metalators (platinum
agents) are equally effective against slowly dividing or
non-dividing cells (termed G, cells). Since strong pattern
similarities are observed among alkylators and platinum
analogs, it is reasonable to conclude that these compounds
have comparable activities against all cell types, as evidenced
by the uniform activity pattern for these groups. Thus com-
pounds that act directly on DNA, either by cross-linking or
less directly by inhibiting enzymes responsible for processing
DNA (i.e. unwinding), fall into this first group. While alkyl-
ating agents would be expected to be included in the class
of DNA-damaging agents, the present finding that topo-
isomerase inhibitors behave similarly to alkylating agents is
unexpected. However, inhibition of topoisomerases result in
DNA damage, with repair modulated by the impact of the
damage. Earlier studies have found that some topoisomerases
are constitutively expressed at relatively constant levels
throughout the cell cycle, even in cells that are not actively
dividing (Hwang ef al., 1989). Thus inhibitors of topoisomer-
ases may potentially be active in tumors that have low growth
fractions (Chabner and Longo, 1996) and as a result exhibit
cytotoxic behavior similar to alkylating agents.

The second major class of compounds identified in our
analysis acts against the enzymatic machinery required for
cell division. Most of these compounds inhibit purine or




pyrimidine biosynthesis or act as antitubulin agents. Evi-
dence to support this claim can be found in the crystallo-
graphic complexes between biosynthetic enzymes and ligands
that are either identical to those included in the set of 122
compounds or close structural analogs. Although it is not
our intention here to present a systematic analysis of struc-
tural data in support of this claim, the Appendix summarizes
our survey of the crystallographic database of proteins
complexed with ligands that bear strong structural similar-
ity to many of the antimetabolite agents in the set of 122
compounds.

A strong correspondence was not observed between
specific MOAs of compounds assigned to each cluster. For
example, alkylating agents and topoisomerase I and II inhib-
itors appear in most of the first eight clusters. The results of
this analysis are, however, sufficiently meaningful to yield an
MOA prediction accuracy of >84%. Inspection of the sub-
clusters obtained from this analysis finds compounds that
both share and lack structural similarity.

Many approaches are available for classification of com-
pounds by chemical structure (Johnson and Maggiora, 1990;
Martin and Willet, 1998). Some approaches are based on
one-dimensional (1-D) global features such as polarizability,
molecular weight and number of hydrogen bond donors/
acceptors (Shemetulskis ez al., 1995; Cummins et al., 1996).
Alternative approaches attempt to maximize a selection of
2-D and 3-D indices assigned to each compound (Good
and Lewis, 1997; Lewis et al., 1997; Weininger ef al., 1997).
Some of the more commonly used descriptors are based
on chemical formula (Weininger et al., 1997), 2-D topological
similarity (Burden, 1989; Brown and Martin, 1996; Randic,
1997; Pearlman et al., 1998) and 3-D superposition (Miller,
1995). Using sets of indices representative of these descrip-
tors, compounds can be assigned a ‘fingerprint’ which can be
used for assessing similarities within groups of compounds
(Gillet and Smith, 1998). Clusters of the 122 compounds
examined here, based on a set of 54 1-D descriptors available
in the Cerius package and based on 2-D SMILES descriptors,
found no statistically significant correlation with the activity
patterns from the screening assay. Taken separately or to-
gether, no combination of these 1-D or 2-D descriptors could
be found to produce a statistically significant correlation with
the activity patterns observed for the 122 agents examined
here. Although examination of Figure 1 provides clear evi-
dence that many compounds within each group have common
substructural features, a systematic means of assigning the
compounds to these groups, on the basis of 1-D and 2-D
descriptors alone, was not apparent. These results are
consistent with widespread observations such as those of
Brown and Martin (1996), where small chemical modifica-
tions can result in quite different biological responses. The
family of camptothecins offers a clear example of such be-
havior, i.e. small differences in the parent structure resulted

SVD analysis of cell screening data

in quite different activity patterns. Our results emphasize the
importance of assessing structural information together with
screening data to assess biological activity.

One important question arises about studies such as that
presented here: what is the effect of data errors on the results?
Single compounds, such as those clustered in Groups 16-24
above, are easily distinguished in this type of analysis. Hier-
archical clustering of SVD distances alone identifies these
singlets on the basis of their position in a separate branch
of the tree. The additional classification based on pairwise
differences in SVD distances with respect to the whole set of
compounds can be further used to determine whether com-
pounds isolated in a single branch of the tree have an
important different activity pattern or lack any such feature.

Measurement errors that appear in the reported log(Gls)
values represent another type of error. These errors result
from experimental conditions as well as errors in data re-
porting. In an attempt to address the importance of these
types of errors on our results, the current data set was
perturbed with random noise and the SVD distances were
recalculated. Figure 4 displays the results of perturbing the
current set of log(Glsp) values by an error that ranges from
zero to 40%. The ordinate in Figure 4 represents the correla-
tion coefficient (Snedecor and Cochran, 1980) between the
matrix of SVD distances calculated for the unperturbed and
perturbed data sets. There we see that perturbing the existing
data with 20% error yields an SVD distance matrix whose
entries are still correlated with the original data with a
correlation coefficient of 0.9. By contrast, a 40% error
produces a correlation coefficient near 0.7. From this analysis
we believe that data error in the range of 10-20% should yield
results extremely similar to those reported here. The actual
error in these data is difficult to establish. An estimate of the
maximum error can be obtained by calculating the coefficient
of variation [C.V. = o/ log(Gls)] for the log(Gls) values
obtained for each compound. The variance (o) is estimated
therein as the squared sum of x; calculated in equation (3).
This method yields a coefficient of variation of 0.87 (or a
percentage error of 13%), which according to Figure 4
corresponds to a correlation coefficient of 0.95. We conclude
that the results of our analysis are robust enough to sustain
errors lower than 15% without significant degradation. The
experimental data used in our study include results from
multiple replicate analysis performed between two to 50
replicates, which would reduce the measurement noise.

Based on the above observation that selected cell types
could be clustered according to their response to the 122
standard agents, we explored whether differences in SVD
distance clusters would occur from analyses based on subsets
of selected cell types that are known to exhibit MDR. Based
on the relative expression of MDR1 mRNA and the immuno-
cytochemical characterization of P-glycoprotein expression
(Wu et al, 1992) eight MDR1 expressing cell types are
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Figure 4

Sensitivity analysis of present SVD results. Correlation coef-
ficients between the results found from SVD derived distances
based on original log(G/so) data, and those based on the randomly
perturbed log(Glso) data. The ordinate represents the percentage
error introduced upon perturbation of the original data set.

identified: HCT-15(CO), SF-295(CNS), HOP-62(NLC),
UO-31(RE), A498(RE), ACHN(RE), CAKI-1(RE) and
RXF-393(RE). This selection conforms most closely to those
cells exhibiting the highest rhodamine efflux measurements
as posted on the Developmental Therapeutics’ web page
(http://dtp.nci.nih.gov). Clustering analysis was performed
using (7) the log(Gls) values from the eight MDR1 expressing
cell lines and (ii) the log(Gls) values from the 52 non-MDRI1
expressing cell lines in the screen. The latter analysis clustered
compounds in a qualitatively similar way to that obtained for
the complete set of 60 cell lines. The analysis performed on
the eight MDR1 expressing cells found that the activity
patterns within this group had similar SVD distances, and
their activity pattern with respect to their response to the 122
standard agents was quite similar to that found for the
previously classified DNA-damaging agents. In particular,
the antitubulin agents found in Groups 9, 11, 12 and 13
exhibit SVD distances that are similar to the members of the
DNA damaging agents in Groups 1-8. In addition to this
subset of antimitotic agents, the antimetabolites found in
Groups 14-25 also display SVD distance patterns that reflect
patterns closely resembling that of the DNA damaging
agents. This result is consistent with the view that MDR is
associated with the increased efflux of etoposides, anthra-
cyclines (topoisomerase IT inhibitors), colchicines and vinca
alkaloids (antimitotic agents) (Pratt et al, 1994; Chabner
and Longo, 1996), and also demonstrates that agents that
inhibit nucleotide biosynthesis are also affected. The result of
multi drug resistance is a more uniform activity pattern across
all cell panels, a feature characteristic of DNA damaging
agents.

The results presented herein can be contrasted with those
available from the web-accessible program COMPARE. The
SVD distances, used in our procedure, and the PCCs, used in
COMPARE, both represent measures of similarity between
activity patterns in the tumor cell screen. A calculation of the
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correlation coefficient between these two measures is statistic-
ally significant (» = 0.51, P < 0.001). A scatter plot of PCC
versus SVD distances finds the correlation to be strongest
for the high values of PCC (PCC > 0.75) and low SVD
distances. Consistent with this observation, compounds with
high PCC values also appear in our SVD-derived cluster sets.
As the PCC values become lower and SVD distances become
greater, their correlation becomes weaker, albeit statistically
significant. The major difference between the two methods
involves identification of cluster membership. The CCC
clustering criterion used in our analysis grouped these
standard agents into 25 distinct clusters. The COMPARE
program generates a PCC for a selected ‘seed’ compound.
Since a PCC above 0.38 is statistically significant (P < 0.05,
n =159), compounds with higher PCCs would be included as
neighbors of this ‘seed’. Constructing clusters according to
this procedure often yields many compounds. As an example,
a COMPARE analysis based on a ‘seed’ selected from com-
pounds in Groups 1-6 from our analysis found statistically
significant ‘hits’ for over half of the 122 standard agents,
many of which were found to have large SVD distances.
Instances where statistically significant PCC values corres-
ponded to near SVD distances were observed for compounds
in Groups 8, 10, 11 and 12 and the single compounds in
Groups 14-24. The agreement between cluster membership
for the two approaches becomes increasingly better when
selection is based on higher PCC values. In support of this
observation, the correlation between PCC values above 0.75
and their SVD distances is 0.72 (P < 0.0001). Our application
of the SVD approach is based on its documented perform-
ance in the analysis of systems with data corrupted by noise.
While it is not our intention here to produce a detailed
comparison of these two methods, it is clear that compounds
with the highest pattern similarities will be found by both
methods. However, in circumstances where these patterns are
less similar, each approach can be expected to yield varying
degrees of agreement.

In summary, statistical clustering tools have been used to
analyze the growth inhibitory potency data available from the
NCTI’s 60 tumor cell line screen. Analysis of the results for 122
standard anticancer agents finds that this set of compounds
can be clustered according to screening patterns into 25
groups, with eight of these groups consisting of DNA damag-
ing agents and the remaining groups consisting of agents
that act to inhibit either nucleotide biosynthesis or mitosis.
Structural similarities are found between compounds as-
signed to these two broad categories. Clustering of the cell
types based on their response to the 122 standard agents
divided the cells into two major branches which were further
subdivided into 21 groups. Strongest within-panel responses
were found for the RENAL, OVARIAN and LEUKEMIA
panels. The current analysis provides a reference for evalu-
ating larger data sets of compounds for similarities in their
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screening patterns with respect to the standard 122 anticancer
agents. Analyses of these larger data sets may be able to relate
more precisely chemical substructure to activity.
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SVD analysis of cell screening data

Appendix. Survey results from an analysis
of available crystal structures complexed
with ligands that are structurally similar to
the standard anticancer agents analyzed
here

Table IV lists the protein complexes identified here for
investigating this issue. Our intention here is not to provide a
complete list of all structural analogs within the Protein Data
Bank (PDB) (Bernstein et al., 1977), but to indicate the range
of protein structures that are known to form complexes
with the structural analogs to the 122 anticancer agents.
The results presented in Table IV were obtained using the
SMILES-based searching tools available in the RELIBASE
part of the PDB browser (http://www.pdb.bnl.gov). The first
column in the table describes the types of enzymes, the
second and third give the name and PDB identifier of each
enzyme, the fourth column is the ligand bound in the com-
plex, and the fifth column lists the anticancer agents that
are either identical or structural analogs to the standard 122
anticancer agents.

The results in Table IV directly indicate the sites of action
of many of the agents assigned to Groups 9-25 of our cluster
analysis. For example, crystallographic complexes exist for
most of the enzymes involved in pyrimidine biosynthesis
pathway. This pathway involves six enzymatically catalyzed
steps. The CAD gene encodes a trifunctional protein associ-
ated with the activity of the first three enzymes in this six-step
pathway: carbamoylphosphate synthase (EC 6.3.5.5), aspar-
tate transcarbamoylase (EC 2.1.3.2), and dihydroorotase
(EC 3.5.2.3)—also referred to as CPSase, ATCase and
DHOase, respectively. Crystallographic complexes exist for
acivicin (163501) bound to CPSase, PALA (224131) bound
to ATCase and brequinar (368390) bound to DHOase. In
addition, the sites of action of methotrexate (740) as well as
other folate by-products, include dihydrofolate reductase,
thymidylate synthase, AICAR transformylase and GAR
transformylase, all of which are included in the set of com-
plexes listed in Table IV. Purine biosynthesis occurs by de novo
pathways as well as from preformed nucleosides and
nucleotides via salvage reactions (Stryer, 1988). Phospho-
ribosyl kinases and transferases are involved in both
processes, and are found in crystallographic complex with
many of the nucleoside analogs included in this study. A
surprising finding includes the recent dimeric structure of
tubulin in complex with a taxane. A nucleoside analog is also
bound at the dimer interface between the o and B tubulin
subunits (Nogales et al., 1998a,b, 1999). Taken together, these
crystallographic complexes indicate that many of the anti-
tumor agents included in these groups target one or in some
cases many proteins involved in nucleic acid biosynthesis
or mitosis. The cell screening patterns of these compounds,
when clustered according to the methods used here, clearly
separate the compounds from DNA-damaging agents.
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Table IV
Proteins complexed with ligands similar to anticancer agents
Enzyme class Name PDB ligand NSC
Ligase carbamoyl phosphate synthase 1jdb GLN chan 163501
" 1jdb ADP 71851,71261
Hydrolase cytidine deaminase laln 3-deazacytidine 102816,143095
" Lett dihydrozebularine 102816,143095,264880
" Ictu zebularine 148958,264880
Oxidoreductase  dihydroorotate dehydrogenase 2dor flavin mononucleotide 148958,27640
" 2dor orotic acid 148958
diaminopimelic acid dehydrogenase ldap NDP 71851,71261
" 1dap DA3 163501
cyclooxygenase 3pgh flurbiprofen 368390
dihydrofolate reductase 1ai9 NDP 71851,71261
" lao8 MTX 740
" 1dhf MTX 740
Transferase thymidylate synthase 1bjg 5-F-deoxyuridine 148958
" 1bjg hydrofolic acid 623017,174121
" lvzd dideazafolic acid 134033
4 2tdd hydrofolic acid 134033
" 1tls 5-F-deoxyuridine 148958
" Hee hydrofolic acid 132483
amidotransferase carbamoy! phosphate 1a9x GLN 163501
synthetase
" la9x ADP 71851,71261
i 2tdd hydrofolic acid 134033
" 1tls 5-F-deoxyuridine 148958
" llce hydrofolic acid 132483
" la9x GLN 163501
aspartate transcarbamylase lacm PALA 224131
phosphoribosyl transferase lopr orotic acid 148958,102816
" 1sto orotidine 148958,27640
carbamoyl transferase Irai cytidine 102816,27640
phosphoribosyglycinamide lcde ribonucleotide 102816
formyltransferase lgar U89 118994,71851,71261
methyltransferase 1v39 homocysteine 71261,71851
nucleotidyl transferase Iwaf GMP 71261,71851
thioredoxin 1t7p guanosine 71261,71851
nucleoside phosphorylase la69 formycin 143095
" 1adt hypoxanthine 71851,71261
" 1aSt ribose-1-phosphate 102816
diphosphate kinase 1bed guanosine 71261,71851
diphosphate kinase lkdn ADP 71261,71851
adenylate kinase 1dvr adenosine 71261,71851
thymidine kinase lkim thymidine 27640
protein kinase inhibitor lkpe adenosine 71261,71851
purine phosphorylase Ivfn hypoxanthine 71851,71261
UMP/CMP kinase 2ukd ADP C5P 71851,71261
Microtubules o/B tubulin dimer Itub gtp,gdp 71851,71261
" Itub taxotere 125973
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SUMMARY

2-Chloroacetyl-2-demethylthiocolchicine (2CTC) and 3-chloroacetyl-3-demethylthiocolchicine
(3CTC) resemble colchicine in binding to tubulin and react covalently with -tubulin, forming adducts with
cysteine residues 239 and 354. The adducts at Cys-239 are less stable than those at Cys-354 during formic
acid digestion. Extrapolating to zero time, the Cys-239 to Cys-354 adduct ratio is 77:23 for 2CTC and
27773 for 3CTC. Using energy minimization modeling to dock colchicinoids into the electron
crystallographic model of B-tubulin in protofilaments [Nogales et al. (1998) Nature 391, 199-203], we
found two potential binding sites. At one, entirely encompassed within -tubulin, the C2- and C3-oxygen
atoms of 2CTC and 3CTC overlapped poorly with those of colchicine and thiocolchicine, but distancés from
the reactive carbon atoms of the analogs to the sulfur atoms of the cysteine residues were qualitatively
consistent with reactivity. The other potential binding site was located at the o/ interface. Here, the
oxygen atoms of the analogs overlapped well with those of colchicine, but relative distances of the reactive
carbons to the cysteine sulfur atoms did not correlate with the observed reactivity. A significant

conformational change must occur in the colchicine binding site of tubulin in the transition from the

unpolymerized to the polymerized state.




Despite the interaction of tubulin with a large number of drugs that inhibit or promote its assembly
into microtubules. precise definition of drug binding sites on the protein has not been possible. This is a
consequence of the lack of success in crystallizing the protein, probably because of its sequence and post-
translational heterogeneity, its instability, and its tendency to form oligomers and polymers of highly
aberrant morphology in the presence of many of these drugs. The recent electron crystallographic
determination of a relatively detailed structure for zinc-induced antiparallel tubulin protofilaments has
provided insights into the paclitaxel/docetaxel site on these protofilaments, since docetaxel was used to
enhance their stability during data accumulation (1), and provided a scaffold on which to model other drug
sites (2). A limitation in such analysis, however, is that drugs that inhibit assembly have limited ability to
bind to tubulin polymers containing linear protofilaments.

Alternative approaches to obtain preliminary information about drug binding sites have included
"direct” photoaffinity labeling (e.g., ref. 3), analog photoaffinity labeling (e.g., ref. 4), and cross link
formation with chemically reactive analogs that retain biological activity (e.g., ref. 5). In the first method, a
drug-tubulin complex is exposed to light of an appropriate wave length and ligand-protein cross link
formation is evaluated. In the second, an active drug analog containing a photbreactive moiety is prepared,
bound to tubulin, and cross link formation induced by exposure of the complex to light of an appropriate
wave length. In the third method, an active analog with a chemically reactive moiety is prepared, bound to
tubulin, and cross link formation occurs either spontaneously or, in principle, following a rapid change in
reaction conditions. Generally, the reactive ligand is radiolabeled to permit quantitation of the reaction and
identification of peptides in the protein involved in cross link formation. In all cases there are two major
problems. The first is the potential for nonspecific protein alkylation by the ligand, which is generally
excluded by demonstrating that excess nonreactive ligand substantially inhibits the covalent reaction. The
second is that adequate radiolabel participates in cross link formation to permit identification of the tubulin

subunit (¢r or B), the peptide region of the subunit. and. ideally. the specific amino acid residue(s) involved.
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The tubulin-colchicine interaction has attracted a great deal of attention, probably because of its
unusual chemical characteristics (for a réview, see ref. 6). The drug (structure in Fig. 1) binds exceptionally
slowly, but noncovalently, to tubulin, and, once formed, the drug-protein complex is highly stable.
Although some have described the association reaction as "essentially irreversible," the dissociation reaction
has been carefully studied, and the half-life of the tubulin-colchicine complex varies from 14-77 h at 37 °C,
depending on precise reaction conditions. In addition, the interaction of tubulin with colchicine appears to
involve significant changes in conformation in both the drug and the protein.

Photoaffinity analogs of colchicine have reacted predominantly with o-tubulin or with both
subunits (7, 8). In contrast, direct photoaffinity labeling, with irradiation at 350 nm (the absorbance
maximum of the tropolonic C ring of colchicinoids), resulted in strongly preferential labeling of B-tubulin
(3,9). A cross link was formed between radiolabeled colchicine and amino acid(s) in peptide sequence 1-36
or peptide sequence 214-241, but not with both peptides.

Our own approach has been to place the small chloroacetyl group (about 3 A in length) at various
locations in analogs of colchicine and thiocolchicine. When placed in the side chain or the C ring, we
observed no significant specific covalent reaction with tubulin. The derivatized A ring analogs 2CTC' and
3CTC, however, are active colchicine site compounds that react covalently with B-tubulin (structures in Fig.
1). The reactions are specific in that they are extensively inhibited by colchicine site drugs, and the two
reactions have different properties. We previously showed that 3CTC reacted predominantly with cysteine-
354 of B-tubulin and noted that there was a minor reaction as well with cysteine-239 (5). In the present
study we demonstrate the reactivity of 2CTC predominantly with cysteine-239, but secondarily with
cysteine-354 as well. We also attempted to construct a model for the A ring subsite of colchicine based on

quantitative differences in the reactivity of 2CTC and 3CTC with the two cysteine residues and on the

electron crystallographic model of tubulin (1).
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EXPERIMENTAL PROCEDURES
Materials.  Preparation of electrophoretically homogeneous bovine brain tubulin (10} and
|HC]2CTC (11) were described previously. Specific activity of the [”C]2CTC was 40 cpm/pmol.
Decylagarose was from ICN Immunobiologicals: CNBr and NEM from Sigma: podophyllotoxin and formic
acid from Aldrich; "sequencing grade" trypsin and "sequencing grade" EP-GC (Staphylococcus aureus V8)
from Boehringer-Mannheim; and precast Tricine-16% acrylamide polyacrylamide gels and PVDF
membranes from Novex. Kodak Biomax MR film was used for preparation of autoradiographs.

Preparation of tubulin derivatized with ["*C]2CTC and separation of o- and B-tubulin subunits by

decylagarose chromatography. Reaction mixtures contained 25 uM (2.5 mg/ml) tubulin, 25 uM [ 14C’J2CTC,

podophyﬂotoxin as indicated, 1.0 M monosodium glutamate, 0.1 M sodium phosphate (pH 7.0), 0.1 mM
GDP, and 0.5 mM MgCl. Incubation was for 30 min at 37 °C, and the reaction was stopped by adding
NEM to a final concentration of 5 mM. The mixture was left overnight at 4 °C, but precipitation of the
tubulin was usually incomplete. The mixture was made 5% (v/v) in trichloroacetic acid, and, after an
additional 30 min at 0 °C, the precipitated protein was harvested by centrifugation. The pellet was dissolved
in a solution containing 4 M guanidine hydrochloride and 2 M NaCl (adjusted to pH 5.0 with HCl) and
applied to a column of decylagarose (12). Chromatography and analysis of protein peaks by SDS-PAGE
was performed as described previously (5). Stoichiometry of [*C2CTC associated with the B-tubulin peak
was 0.17, and with the o-tubulin peak, 0.03. Only B-tubulin of least 90% purity was used in further studies,

except in the podophyllotoxin inhibition study, in which unresolved tubulin was used.

Chemical and enzymatic_digestions of B-tubulin cross linked to [MCRCTC. The |'HC|2CTC-[-3~
tubulin at 2.5 mg/ml was digested at 37 °C in the dark either with 75% formic acid for 96 h (13) or with
CNBr (20 mg/ml) in 70% formic acid for 24 h. The formic acid and. if’ present. CNBr were removed by
fyophilization, and the residue was washed twice with water. which was removed each time by

lyophilization.




For enzymatic digestions the [MC]ZCTC—B—tubulin was dissolved in 1.0 M Tris (pH 8.0 with HCI).
The tubulin solutions were diluted 10-fold into 50 mM ammonium acetate (pH 4.0) for EP-GC or water for
trypsin, and the appropriate enzyme was added at an enzyme to substrate ratio of 1:50. The resulting
reaction mixtures were incubated for 24 h at 37 °C in the dark. At the end of the incubation, about 75% of

the water in the samples was removed by lyophilization.

Peptide _purification. Peptide separation was by SDS-PAGE on Novex precast gels, with the

peptide solution to be analyzed dissolved in the Tricine-SDS Sample Buffer solution provided by Novex.
Following electrophoresis the separated peptides were transferred from the gel to a PVDF membrane (pore
size, 0.2 um) with an Enprotech semidry transblot system (1 h, 100 v). The membrane was stained with
Coomassie Blue R250 and autoradiographed (24-72 h exposure). Radiolabeled peptides were cut from the
membrane for sequencing.

Sequence analysis. Automated Edman degradation for determination of amino acid sequence was
performed with an Applied Biosystems model 494A Protein Sequenator. Identification of
phenylthiohydantoin amino acid derivatives was carried out with an Applied Biosystems model 140C
Microgradient System and model 785A Programmable Absorbance Dectector. Identification of
radiolabeled amino acid residues was performed by the University of Virginia Biomolecular Research
Facility. Following each cycle of Edman degradation the sample stream was analyzed by liquid scintillation
counting for radiolabel instead of analyzed by HPLC to identify the derivatized amino acid residue.

Molecular modeling. A two-stage modeling analysis was used, first, to identify candidate binding

sites on the tubulin dimer and, second, to dock the molecular structures of colchicinoids into these sites. The
first procedure probes the c-alpha coordinates of the tubulin dimer (1) to determine exterior positions that
are most likely to be found within a binding interface. This analysis uses information about local geometry

and chemical composition of subregions of the target surface for selecting candidate sites. Relative rankings

of these potential interaction sites are based on a scoring scheme derived from a statistical analysis of all




known protein-ligand complexes. In applying this method to analysis of new crystal complexes, we have
found that the correct ligand interface is found within the top 5% of candidate binding sites (D. Covell,
unpublished data). This method has also been shown to correctly identify ligand binding sites for a wide
range of proteins and ligands (14, 15). For a complete description of this procedure sce ref. 16.

The second stage of the the analysis involves docking the test ligands at candidate binding sites.
The initial docking is based exclusively on geometric considerations. This step uses a “geometric hashing
technique” that has been found to rapidly determine a family of possible binding geometries for each ligand
(17). Each of these possible binding arrangements are further refined to determine those positions with the
maximum binding strength between ligand and target protein. A previously published model of ligand
binding (18) was used to select the best binding geometries. This model is based on the atomic preferences
of adjacent surfaces buried within a binding interface (18). The model has been shown to predict accurately
ligand binding strengths and assess the relative contributions of atomic interactions within a binding
interface (17). Moreover, the model has been extended as an adjunct to computational docking (19), has
proven effective for identifying ligands active against NCp7 targets (20), and has been useful in providing
testable hypotheses about the modes of action of candidate inhibitors for a variety of enzymes (21-23).

The final stage of docking was obtained from successive in vacuo molecular dynamics and energy
minimization calculations using the CVFF91 force field within Discover97.0 (Molecular Simulations, Inc.,
San Diego CA), based on the candidate geometries obtained from steps one and two, as outlined above. This
final step resulted in small changes in geometries, both in the ligand and in the target protein, primarily to
eliminate encrgetically unfavorable van der Waals interactions. These dynamics and minimization steps
were preformed repeatedly to achieve the final geometries. Exploration of these final geometries, which
were used for our analysis, indicates trapping in a local energy minimum. The resulting geometries did not
significantly alter the starting geometrics of each ligand and were acceptable within the 3.6 A resolution of

the electron crystallographic structure of tubulin (1).




RESULTS

In our initial characterization of the interactions of 2CTC and 3CTC with tubulin (24), we found
that these interactions were similar to that of colchicine with tubulin (slow, temperature-dependent binding;
similar quantitative inhibitory effects on polymerization; similar binding stoichiometries), and both
compounds were competitive inhibitors of the binding of [*H]colchicine to tubulin (apparent K; values,
about 3 uM). Unlike colchicine, however, they formed a covalent bond with B-tubulin, and bond formation,
as well as the initial binding reéction, was strongly inhibited by podophyllotoxin. The major difference
between 2CTC and 3CTC was in the covalent reactions, which were studied most extensively with the
compounds at 5 uM and tubulin at 20 pM. With 3CTC the covalent reaction occurred almost
simultaneously with binding, and about 57% of the bound drug formed a covalent bond with tubulin. With
2CTC covalent bond formation was much slower than the binding reaction. After 30 min about 26% and
after 1 h 30% of the bound drug had covalently reacted with the tubulin. Finally, with superstoichiometric
concentrations of both 2CTC and 3CTC the covalent reactions were more extensive, but there was a
significant reduction in the apparent specificity of the covalent reactions (i.e., a smaller proportion of
covalent bond formation was inhibited by podophyllotoxin).

Because of the more extensive covalent reaction with 3CTC, we initially studied it in detail (5),
purifying the alkylated B-tubulin by decylagarose chromatography. Analysis of CNBr peptide digests
resolved by HPLC were consistent with alkylation of Cys-354 and Cys-239 in roughly a 2:1 ratio, but
formic acid peptide digests resolved by SDS-PAGE indicated a 9:1 ratio.

In the studies presented here we used 75% formic acid digestion for the initial analysis of
["'C12CTC-containing peptides. The primary cleavage site under the condition used is aspartylproline (13),
and there are two such sites in B-tubulin (positions 31/32 and 304/305). Rao et al. (4) termed the three
resulting peptides Al (residues 1-31), A2 (32-304), and A3 (305-445), and these peptides migrate as

expected upon SPS-PAGE. In our hands there are also secondary cleavage sites of B-tubulin in formic acid
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(5), but the amino acid sequences of the less prominent bands suggested that secondary cleavage occurred
subsequent to hydrolysis of the aspartylproline bonds (also, see below).

In an initial experiment with unresolved tubulin following its interaction with [“CJ2CTC, we
ohserved heavy labeling of both A2 and A3 by [*C]2CTC. Formation of both radiolabeled peptides was
abolished in the presence of podophyllotoxin (data not presented), consistent with our previous observations
(24).

Thus encouraged, we separated - and B-tubulin on decylagarose following the reaction with
["C]2CTC prior to formic acid digestion. After formic acid treatment the protein digest was subjected to
SDS-PAGE, and the peptides on the gel were electrotransferred to a PVDF membrane, which was stained
and autoradiographed. Track I in Fig. 2A shows the Coomassie Blue stain pattern obtained, with peptides
Al. A2, and A3 indicated. Track I is the autoradiogram of the stained track I, showing the heavily labeled
A2 and A3, with a number of minor radiolabeled bands between A2 and A3 and between A3 and Al. These
presumptive assignments were confirmed by sequential Edman degradation for 15 cycles in the case of A2
and 10 cycles for A3 (Table I). In addition, sequence analysis was performed on minor radiolabeled bands
running between A2 and A3 and between A3 and Al. In the former case, these were found to have the same
amino terminal sequence as A2; and in the latter, the same amino terminal sequence as A3 (data not
presented).  For comparison, we also include as Track HI in Fig. 2A an autoradiogram of formic acid
digested B-tubulin following an identical incubation with [MCBCTCA As previously (5), there was little
rqdiolabel in A2, in contrast to the heavy radiolabel in A3 and A3 fragments. Densitometric analysis of gels
11 and 111 indicated that the ratio of A2-+fragments:A3+fragments was about 0.7:1 following reaction with
2CTC and 0.1:1 following reaction with 3CTC (see Table 1I).

To better define the two reactive amino acids following the covalent interaction of B-tubulin with
MCRCTC, we next digested the decylagarose-isolated protein with CNBr. with subsequent PAGE and

clectrotransfer of the peptides to PVDE. An autoradiogram from a (ypical experiment is shown as Track Tin
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Fig. 2B. Reproducibly, only two radiolabeled bands were observed, with the upper "peptide a" more
heavily labeled than the lower "peptide b". Sequential Edman degradation of peptides a and b yielded
sequences consistent with CNBr-derived peptides spanning residues 234-257 (for 10 cycles) and 331-363
(17 cycles), respectively. The former peptide is entirely within the A2 peptide obtained with formic acid,
and the latter within the A3 peptide.

We also re-evaluated B-tubulin following its reaction with ["CJ3CTC and CNBr digestion by the
PAGE-electrotransfer methodology. A typical autoradiogram is shown as Track IF in Fig. 2B. Note that the
same two bands were radiolabeled with 3CTC as with 2CTC (confirmed by sequential Edman degradation,
data not presented). The relative amounts of radiolabel in the a and b peptides in the two Tracks shown in
Fig. 2B were 2:1 for the 2CTC sample and 0.4:1 for the 3CTC sample, as determined by densitometry

(summarized in Table II).

In our previous study we had clearly established that the bound [“*C]3CTC reacted primarily with
Cys-354 of B-tubulin, but we had also obtained preliminary data consistent with a secondary reaction of
bound 3CTC with Cys-239 (5). However, the autoradiogram of the electroblot shown as Track 1T in Fig. 2B
and the sequence data obtained from the peptide suggested that the secondary reaction was more substantial
than we had previously thought. At the same time, the apparent identity of the CNBr peptides obtained
from the [*C]3CTC-reacted B-tubulin and the [**C]2CTC-reacted p-tubulin strongly indicated that the two
colchicine analogs alkylated the same cysteine residues in different proportions.

The microsequencing Edman degradation procedure uses too little material for direct identification
of the radiolabeled amino acid residue on peptides embedded in PVDF membranes (the degradation steps
are performed directly on the membrane slice). In previous studies (5, 25) we have found it possible to
perform an appropriate digestion of the entire polypeptide, subject the peptide mixture to sequential Edman
degradation, and count the outflow of each cycle to obtain evidence to identify the specific amino acid

residue that had been alkylated. Considering the two radiolabeled peptides generated by CNBr digestion
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(B234-257 and B331-363), a total B—tubu]in—[l“(j]'ZCTC cyanogen bromide digest should yield a peak of
radiolabel at the sixth degradation cycle if the expected Cys-239 were radiolabeled (radiolabel cross linked
to Cys-354 would not appear for 23 cycles). Such an experiment was performed. with the outflow of 10
cycles counted. We obtained the expected result (Fig. 3A) and conclude that the major alkylation of -
tubulin by 2CTC occurs at Cys-239.

To confirm that 2CTC alkylation of B-tubulin also occurred at Cys-354 we turned to enzymatic
digestion of B-tubulin that had reacted with the drug. A single experiment with EP-GC was performed. The
peptide digest was subjected to SDS-PAGE and electrotransfer to PVDF, and the autoradiogram obtained is
presented in Fig. 2C. Two closely spaced radiolabeled peptides were observed, and the sequences obtained
from the minor, upper peptide "a" and the major, lower peptide "b" are presented in Table 1. Consistent
with EP-GC digestion, the sequence of the minor peptide, through 11 cycles, resulted from cleavage
between Glu-343 and Trp-344 (the carboxy terminus of this peptide could be at Asp-355, but most likely is
at Glu-376. Glu-383, or Glu-401, based on the apparent size of the peptide). This result further narrowed
the location of the secondary alkylation site of 2CTC to the B-tubulin sequence spanning amino acid
residues 344-363 (the amino terminus of the CNBr secondary peptide).

The major EP-GC peptide, however, yielded an unexpected sequence, beginning at Thr-199,
indicating cleavage after Glu-198. Three potential downstream cleavage sites (Asp-203, Glu-205, and Asp-
209) are included in the sequence obtained, and an additional potential site at Asp-224 must have also been
skipped for this peptide to includc; Cys-239. Based on peptide size. we assume the carboxy cleavage site
wis Asp-249, since the next potential residue is Glu-288.

We next examined trypsin, but only very small peptides were generated from f-tubulin that had
reacted with [P*CJ2CTC, and resolution by SDS-PAGE was minimal. On most electroblots a single
radiolabeled peptide band was observed. but sequence analysis indicated it was very heterogencous.

However. when the entire B-digest was subjected (o sequential degradation and (he outflow stecam counted,
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a dramatic radiolabeled peak was observed at the fourth of 14 cycles (Fig. 3B). This is the expected result
for radiolabel at Cys-354, for tryptic cleavage should occur at Lys-350. (The tryptic peptide containing Cys-
239 should begin with Leu-217, so no radiolabel should derive from this peptide during the 14 cycles

examined.)

Molecular modeling. The electron crystallographic coordinates of the gf-tubulin dimer (1) were

analyzed for candidate binding sites for colchicine. As described above, the procedure consists of scoring
the solvent accessible surface of the tubulin dimer for cavities with strong ligand binding features. This
method was developed by a detailed examination of multiple crystallographically available ligand-receptor
complexes, with subsequent determination of residue types most likely to be found in a binding interface.
Subsequent' testing of this method against newly available crystal complexes has shown that the correct
ligand binding site is found within the topmost candidate sites identified by the method. Regions on the
tubulin dimer that were identified as candidate binding sites were then subjected to computational docking
with colchicine, thiocolchicine, 2CTC, and 3CTC. The final docking arrangement was obtained by
sampling the lowest energy geometries from successive in vacuo molecular dynamics and minimization
calculations. In these simulations both ligand and target were allowed to relax to their lowest energy
configurations.

Tn the initial step the entire surface of the tubulin dimer was scanned for candidate binding sites.
The analysis yielded sites that were located at the plus and minus ends of the dimer, in a region entirely
within B-tubulin near the paclitaxel binding site, and at the o/B interface. The two highest scoring sites for
colchicinoid binding were the latter two, and both were located near the Cys-239/Cys-354 region of -
tubulin. The sites at the plus and minus ends of the dimer were not examined further, since they were distant
from the two reactive cysteine residues. The site contained within B-tubulin we term "Site A" (cf. ref. 2),
and the interface site we term "Site B." Fig. 4 shows a colchicine molccule docked into each of these

alternative potential binding sites (we emphasize that this figure does not mean 1o imply two independent
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binding sites for colchicine). with the left-hand panel showing the solvent accessible surface and the right-
hand panel the peptide backbone as a ribbon diagram. Note that Site B is most consistent with data obtained
with photoactive colchicine analogs. where covalent interactions with both q- and B-tubulin were observed
(7. 8).

Amino acid residues of B-tubulin in closest contact with colchicinoids bound in Site A were His-
227 and Phe-270 (A ring). Val-23 and Ala-231 (B ring), and Asp-26, Tyr-36, and Phe-242 (C ring). For Site
B B-tubulin residues in closest contact with bound colchicinoids were Tyr-36 (A ring) and Arg-2 (C ring),
and o-tubulin residues were Asp-76 (B ring) and Thr-73 (C ring).

In Fig. 5 we show the relationship of the Site A (panel A) and Site B (panel B) docked colchicine
molecules to the peptides identified by Uppuluri et al. (9) following direct photoaffinity label.ing of tubulin
by colchicine. In both panels the backbone of the peptide containing residues 1-36 is shown in white, while
the peptide containing residues 214-241 is shown in orange. In addition, the side chains of Cys-239 and
Cys-354 are shown in both panels, with the sulfur atom of the former colored light blue and of the latter
colored yellow. In Table HI we present the distances for both potential binding sites between the C2 and C3
oxygen atoms of colchicine and the Cys-239 and Cys-354 sulfur atoms. Although the backbone of the 214-
241 residue peptide appears to be in closer contact with colchicine docked in Site A than in Site B, van der
Waals distances measured from colchicine docked in the sites to any atom of the peptide, including the side
chains, did not allow us to choose between Sites A and B. Colchicine docked in Site A was 2.8 A from
residue 33 and 2.1-2.5 A from residues 231, 234, and 239. Colchicine docked in Site B was 1.6-2.6 A from
residues 2, 3, and 36 and 2.1-2.3 A from residues 240 and 241.

[n addition. in examining this region of the model in detail, we noted that for potential binding Site
A several amino acid side chains formed a significant barrier between the S atoms of Cys-239 and Cys-354
and between colchicine and the S atom of Cys-354. and. conversely, for potential binding Site B these side

chains formed a barrier hetween the bound colchicine and the S atom of Cys-239 (not shown). This aspect
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of the model appears to be inconsistent with the ready cross linking of Cys-239 and Cys-354 in
unpolymerized tubulin that occurs with EBI and the extensive inhibition of this intercysteine cross link
formation by colchicine site drugs (26, 27). A significant conformational change may therefore occur in this
region of the molecule when tubulin of-dimers polymerize into protofilaments.

When thiocolchicine was modeled into both sites by energy minimization, its position did not differ
greatly from that of colchicine (Table III), consistent with its similar properties in binding to tubulin (28,
29). However, neither the C2-oxygen atom of 2CTC nor the C3-oxygen atom of 3CTC overlapped closely
onto the C2- and C3- oxygen atoms, respectively, of colchicine when these molecules were positioned into
Site A by energy minimization (Fig. 6). These shifts in position, however, did bring the reactive carbon
atoms of the chloroacetyl groups relatively close to the two sulfur atoms, and the relative distances (shown
in Table II) did correlate qualitatively with the relative reactivities of the two cysteines that we have
observed. However, in this modeling method the amino acid side chains blocking access to the sulfur atom
of Cys-354 were not substantially repositioned, so that this sulfur atom remains shielded from the
chloroacetyl moieties and therefore should not react with them.

For potential binding Site B, the energy minimization modeling again showed negligible differences
between colchicine and thiocolchicine (Table IIT), and in this binding site the C2-oxygen atom of 2CTC and
the C3-oxygen atom of 3CTC more closely overlapped the corresponding oxygen atoms in colchicine (Fig.
7). However, the distances from the reactive carbons of both analogs to the sulfur atoms of Cys-239 and
Cys-354 were all nearly identical (Table II). In addition, the Cys-239 sulfur atom remained shielded from
the chloroacetyl moieties of 2CTC and 3CTC by amino acid side chains. In Fig. 7 we also show a portion
of the g-tubulin peptide backbone, and it is notable how the B ring side chain of the colchicinoids has

similar proximity to both tubulin subunits. Note also that in Site B the colchicinoid C ring overall is in

closer contact with g-tubulin than with ﬁ—tubulin.

The poor overlap of the colchicinoids in Site A raised the guestion whether the iterative energy
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minimizations had resulted in a significant change in drug conformation in fitting the compounds into this
site. Comparison of in vacuo drug structures with those bound in Sites A and B demonstrated that this was
not the case, as shown in Fig. 8 for colchicine, 2CTC, and 3CTC. Each compound is shown in energy
minimized unbound conformations superimposed with the conformations of the compound bound in Site A
and in Site B. There thus appears to be a shift of the 2CTC and 3CTC molecules relative to colchicine when
energy minimized structures are bound in Site A.

This poor overlap of the C2 and C3 oxygen atoms of 2CTC and 3CTC with those of colchicine in
Site A remained of concern to us. Our original rationale in undertaking this study was that the reactivity of
the analogs with tubulin amino acid residues should provide insight into the location of these two oxygen
atoms of colchicine in its binding site, having made the assumption that the molecular conformations of the
unbound drugs would be almost identical. We therefore confirmed this original assumption by performing
an energy minimization comparison of unbound 2CTC, 3CTC, thiocolchicine, and colchicine. Fig. 9 shows

the nearly complete overlap of common structural elements, including the C2 and C3 oxygen atoms.
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DISCUSSION
Our goal in this project was to attempt to model colchicine (and closely related structural analogs)
into a theoretical binding site on tubulin. Luduefia and his colleagues have shown that EBI cross links 3-
Cys-239 and B-Cys-354 with high specificity. Longer carbon bridges between the two iodoacetamide
moieties almost eliminated cross link formz.ltion, leading to the conclusion that the two S atoms were about 8
A apart; and formation of this cross link is potently inhibited by colchicine site drugs (26, 27). In our
previous study with [M*CI3CTC (5) we had concluded, largely based on results of formic acid digestion, that

B-Cys-354 was the primary alkylation site in tubulin for this analog, although we also noted a minor
reaction at B-Cys-239. In our current studies with [*C12CTC alkylation was greater at Cys-239 than at Cys-
354, and this was most apparent following digestion with CNBr or endoproteinases. The reactivity of 2CTC
with Cys-239 was apparently reduced following formic acid digestion compared to other methods, and this
caused us to re-evaluate the reactivity of 3CTC. The apparent relative reactivity of the two cysteine residues
with both colchicine analogs is summarized in Table II, which summarizes both the autoradiograms shown
in Fig. 2 and average results obtained from multiple formic acid and CNBr digestions.

It is clear that with both analogs the cross link to Cys-239 is relatively labile in the formic acid
digestion, and we assume that this is due to the prolonged 4-day incubation. Since the 1-day incubation
with CNBr occurs at nearly the same formic acid concentration, it is not unreasonable to extrapolate the
ratio of Cys-239 to Cys-354 modification back to zero time by drawing straight lines through the 1- and 4-
day time points. When this is done (not shown), one obtains a 77/23 distribution of Cys-239/Cys-354
madification for 2CTC, and a 27/73 distribution for 3CTC.

The obvious conclusion from these results is that the C2-oxygen atom of colchicinoids is closer to
Cys-239 and the C3-oxygen atom is closer to Cys-354, assuming that in all cases the covalent reactions
involve a nucleophilic attack of electrons of the cysteine S atom on the chloroacetyl group, with

displacement of the chlorine atom. There are additional quantitative aspects of the two drug-tubulin
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interactions that should be considered.

Our initial observations that 3CTC reacted covalently with tubulin virtually as fast as it bound while
the 2CTC covalent reuctionb lagged behind binding (24) was reflected in the stoichiometry of covalent drug
bound to B-tubulin isolated by preparative decylagarose chromatography for the sequencing studies. The
average value for IMCBCTC was 0.32 mol drug/mol tubulin (5) and for [MC'IZCTC was 0.17 mol/mol (see
Experimental Procedures). Multiplying these values by the zero time distributions, one can conclude that
with 2CTC there is 0.12 mol/mol of ["*C]-labeled adduct at Cys-239 and only 0.05 mol/mol at Cys-354; and
with 3CTC 0.11 mol/mol at Cys-239 as compared with 0.21 mol/mol at Cys-354 (Table 10).

There is, however, a further complication in these calculations, in that there are four isotypes of -
tubulin in bovine brain. One of these, B, has a serine residue instead of cysteine at position 239, and this
isotype represents about 25% of total brain B-tubulin (30). Assuming that 2CTC and 3CTC bind
equivalently to all isotypes and that the covalent reactions occur equally (however, see below), then the
relative reactivity of Cys-354 needs to be corrected for the absence of Cys-239 in Bu-tubulin. This reduces
the relative stoichiometry of 2CTC cross linked to Cys-354 to 0.04 and of 3CTC to 0. 16.

Let us assume these relative stoichiometries correlate with distances between the C2- and C3-
oxygen atoms and the cysteine sulfur atoms. If this is true, then i) the C2-oxygen is about 3 times as far
from the Cys-354 sulfur as the Cys-239 sulfur, ii) the C3-oxygen about 50% further from the Cys-239 sulfur
as the Cys-354 sulfur, iii) both oxygens are nearly equidistant from the Cys-239 sulfur, and iv) the C2-
oxygen should be about 4 times further than the C3-oxygen from the Cys-354 sulfur.

However, when we used energy minimization programs to model colchicine and the analogs into
the electron crystallographic model of B-tubulin (1), we obtained entirely unexpected results, largely
inconsistent with the ahove predictions (see Table 111).  For potential binding Site A, colchicine and
thiocolchicine were relatively close to the components of the two peptide sequences (one of which included

Cys-239) that reacted with |31'1]c()lcl’|i<‘inc following dircet photoaflinity Tabeling (9). but Cys-354 was
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somewhat more distant, and direct access to its S atom was blocked by several amino acid side chains.
Moreover, the A rings of 2CTC and 3CTC differed significantly in location from the A rings of colchicine
and thiocolchicine following modeling by energy minimization into Site A (despite the near-identical
biochemical properties of the four colchicinoids and the equivalent conformations of the unbound
molecules). This could indicate a remarkable degree of plasticity in the colchicine site in its
accommodation of structurally similar compounds, and the larger Site A could probably accommodate the
significant structural variability in ligands known to bind at the colchicine site. Finally, the reactive carbon
atoms of 2CTC and 3CTC were relatively close to the sulfur atoms of Cys-239 and Cys-354.

For Site B, colchicine remains in close proximity to components of the peptides cross linked to the
drug in the direct photoaffinity study (9), and Site B is consistent with the published subunit reactivity in the
analog photoaffinity studies (7, 8). Moreover, in Site B there is greater similarity in the binding footprints
of 2CTC and 3CTC to that of colchicine. In this model, however, the reactive carbon atoms in the
chloroacetyl groups are more distant from the cysteine sulfur atoms, and it is now the sulfur atom of Cys-
239 that is shielded by amino acid side chains. In addition, binding Site B is smaller and would appear to be
more restrictive in the structural diversity it would tolerate in potential ligands.

Alternatively, the colchicine site may undergo significant conformational change from of3-dimer to
protofilament, suggested by the failure of polymer to bind colchicine (31, 32), the failure of dimer to bind
paclitaxel (33), and the ease with which EBI cross links Cys-239 and Cys-354 (26, 27) in the dimer.

The above discussion, as well as the electron crystallographic model (1), assumes no differences
between the different isotypes of B-tubulin. This is probably not justified, since immunopurified tubulin
containing each of the three major brain B-isotypes (Bu, 58%; Bu, 25%; and Biv, 13%; data from ref. 30)
reacts with colchicine (34, 35) and colchicine analogs (36, 37) with different kinetics and different affinities.

It is even possible, although probably far-fetched, that only one isotype (e.g., tubulin containing fuy) reacts

at Cys-354 and another (e.g., ) reacts at Cys-239.
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3CTC allow us to make one additional speculation.

QOur findings with [HC|2CTC and [”C'
Although thiocolchicine (28, 29) and 2CTC and 3CTC (24) bind to tubulin more rapidly than colchicine.
these analogs share with colchicine a relatively slow binding reaction. Since, within the measured time
frame, 3CTC reacts covalently with B-tubulin as fast as it binds. it is likely that the spatial relationship
between Cys-239 and Cys-354 and the C3-substituent is relatively static, at least under the reaction
conditions used. However, the covalent reaction of 2CTC with B-tubulin increases with time of incubation,
lagging well behind the binding reaction. Perhaps this is due to the changes in the conformation of drug or
tubulin previously documented by other workers (6). This implies that such conformational changes would
include moving the C2-substituent closer to Cys-239 and/or Cys-354.

Finally, we should point out an apparent limitation to molecular modeling approaches that was
revealed as our studies progressed. Although there is no evidence for more than one high affinity site for
colchicine binding to tubulin (6). we initially observed four candidate binding sites that merited exploration.
Only two could be eliminated because they were inconsistent with our biochemical data, and neither
remaining site is entirely satisfactory without postulating conformational changes that might occur as
tubulin alternates between the polymerized and unpolymerized states and/or responds to binding of the
ligand. While modeling methods similar to those we used here have found widespread application in areas
of rational drug discovery and design, it is clear that additional validation steps for predicted docking
gcometries will be necessary. Computational results can be especially valuable, however, in providing a

scaffold for hypothesis generation and data interpretation.
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FOOTNOTES
'The abbreviations used are: 2CTC, 2-chloroacetyl-2-demethylthiocolchicine; [HCJZCTC, 2-
(Chloromethyl—[HC]carbonyl)—2-demethylthiocolchicine; 3CTC, 3-chloroacetyl-3-demethylthiocolchicine;
[HCBCTC., 3—(chloromethyl—[14C]czn‘bony1)—3—demethylthiocolchicine; NEM, N-ethylmaleimide; HPLC,
high-performance liquid chromatography; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel
electrophoresis; PVDF, polyvinylidene difluoride; EBI, N,N"-ethylene(bis)iodoacetamide; CNBr, cyanogen

bromide; Tricine, N-{2-hydroxy-1,1-bis(hydroxylmethyl)ethyl|glycine; EP-GC, endoproteinase Glu-C.
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and XX the tryptophan residues. These residues cannot be identified following Edman degradation, and in
the actual sequence studies no definitive amino acid assignment could be made. Other positions for which
no definitive assignment could be made are indicated by the absence of an entry. Sequencing was
performed by automated Edman degradation on an Applied Biosystems model 494A Protein Sequenator.

Identification of phenylthiohydantoin amino acid derivatives was performed with an Applied Biosystems

Table ]

Amino acid sequence analysis of the major radiolabeled peptides

derived from tubulin cross linked to [”CJ'ZCTC

model 140C Microgradient System and model 785A Programmable Absorbance Detector.

Peptides sequenced are those shown in Fig. 2. X indicates the cysteine positions in the sequences,

Cycle #

10
11
12
13

14

a2
Pro-32
Thr
Gly
Ser
Tyr

His

Asp
Leu
Gln
Leu
Glu

Arg

Formic acid peptides

A3
Pro-305
Arg
His
Gly
Arg
Tyxr
Leu

Thr

CNBr peptides

a
Ser-234
Gly
val
Thr
Thr
X

Leu

Phe

Pro

b

Leu-331

Tyr
Phe
val

Glu

le

Pro

EP-GC peptides

a

XX:Trp-344 Thr-199

Ile
Pro
Asn
Asn
val
Lys
Thr
Ala
val
X

Asp

b

Tyr

Leu
Tyr
Asp

Ile

Phe

Arg
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Table I

Relative apparent reactivity of Cys-239 and Cys-354 with 2CTC and 3CTC

Densitometry data:

Digestion method
Formic acid (Fig. 2A)
Formic acid (overall)
CNBr (Fig. 2B)

CNBr (overall)

Calculated® stoichiometry:

Total
znalog pmol
2CTC 0.17
3CTC 0.32

(Yci20TC

[Mc13cTCe

[MC] in Cys-239 peptide/[*C] in Cys-354 peptide

0.7

1.8 £ 0.4

At Cys-239

0.1

0.43 = 0.02

At Cys-354

ligand/pmol B—tubulin (corrected for Biir)

0.12

0.11

0.05 (0.04)

0.21 (0.1s)

*See text (Discussion).
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Table 111

Calculated intermolecular distances from best-fit models

To Cys-239 S atom To Cys-354 S atom

—————————————— Distance in A -—----~----~=-

Potential binding Site A:

Colchicine®

From C2 O atom 5.6 9.0

From C3 O atom 8.3 11.7
Thiocolchicine®

From C2 O atom 5.6 9.2

From C3 O atom 8.3 11.9
20Tc?

From C19 5.1 5.4
3CTC?

From C20 5.9 4.7

Potential binding Site B:

Colchicine®

From C2 O atom 11.1 9.4

From C3 O atom 10.0 11.1
Thiocolchicine®

From CZ O atom 11.1 9.4

From C3 O atom 10.0 11.1
2¢TC?

From C19 13.8 . 10.9
3cTe®

From C20 11.3 11.2

*Numbering as shown in Fig. |
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FIGURE LEGENDS

Fig. 1. Structures of colchicine, thiocolchicine, 2CTC, and 3CTC. In the diagrams of 2CTC and
3CTC. the radiolabeled carbons are indicated by the arrows. The compounds are shdwn in the preferred aS-
7S configuration (38).

Fig. 2. Autoradiograms of sequenced peptides. A. Formic acid digestion. Tracks [ and II display,
respectively, the Coomassie blue stained PVDF electroblot and its autoradiogram of a digest of 3-tubulin
cross linked to [*C)2CTC following SDS-PAGE. Track III displays the PVDF electroblot of a digest of B-
tubulin cross linked to [*CJ3CTC. B. CNBr digestion. Tracks I and II display, respectively, the
autoradiograms of digests of B-tubulin cross linked to [*C]2CTC or [*CI3CTC following SDS-PAGE. C.
EP-GC digestion. The track displays the autoradiogram of a digest of [-tubulin cross linked to [*cperc
following SDS-PAGE.

Fig. 3. Radiolabel recovered following sequential Edman degradation of a CNBr digest (A) or a
trypsin digest (B) of B-tubulin cross linked to [*/C]2CTC.

Fig. 4. Modeling of colchicine into the electron crystallographic model of of-tubulin (1). The o-
tubulin subunit is shown in olive, the B-subunit in gray. In the colchicine diagrams carbon atoms are shown
in green, oxygen in red, nitrogen in blue, and hydrogens (if shown) in white.  The left-hand image
represents a solvent accessible surface rendition of the of-tubulin structure, showing colchicine in the two
alternative proposed binding sites. The right-hand image represents a ribbon diagram of the polypeptide
backbone of the a3-tubulin structure, with colchicine in the two alternative proposed binding sites. Fig. 5.
Modeling of colchicine into the electron crystallographic model of op-tubulin (1), showing the relationship
of the bound colchicine to peptides containing residues 1-31 (white) and 214-241 (orange) and to Cys-239
(S atom, light blue) and Cys-354 (S atom, yellow). In the cysteine and colchicine structures carbon atoms

are shown in green, oxygen in red, and nitrogen in blue (hydrogens not shown). A. Colchicine bound in Site

A. B. Colchicine bound in Site B.
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Fig. 6. Modeling of colchicine, 2CTC, and 3CTC into Sitc A. The B-tubulin polypeptide backbone
of the colchicine-bound model is indicated by the continuous dark green thin strand. Shifts in this backbone
were not extensive, as indicated by the reiterated positions of Cys-239 and Cys-354. In the cysteine
residues, the oxygen atoms are red, the nitrogen atoms blue, the carbon atoms green, the sulfur atoms as
described below, and the hydrogen atoms not shown. All atoms in colchicine are in magenta, except that
hydrogen atoms are not shown and the C2 and C3 oxygen atoms, as labeled. are in orange. The sulfar atoms
in the two cysteine residues in the colchicine-bound structure are also shown in orange. All atoms in 2CTC
are in light blue, except that the C2-oxygen atom is shown in garnet (arrow), the reactive C19 atom (see Fig.
1) is in white, and hydrogen atoms are not shown. The sulfur atoms in the two cysteine residues in the
2CTC-bound structure are also shown in white.  All atoms in 3CTC are in dark blue, except that the C3-
oxygen atom is shown in yellow (open arrow), the reactive C20 atom (see Fig. 1) is in black, and hydrogen
atoms are not shown. The sulfur atoms in the two cysteine residues in the 3CTC-bound structure are also
shown in black.

Fig. 7. Modeling of colchicine, 2CTC, and 3CTC into Site B. The B-tubulin polypeptide backbone
of the colchicine-bound model is indicated by the continuous dark green thin strand, and that of g-tubulin by

the yellow strand. Shifts in this backbone were not extensive, as indicated by the reiterated positions of

 Cys-239 and Cys-354. In the cysteine residues, the oxygen atoms are red, the nitrogen atoms blue, the

carbon atoms green, the sulfur atoms as described below, and the hydrogen atoms not shown. All atoms in
colchicine are in magenta, except that hydrogen atoms are not shown and the C2 and C3 oxygen atoms, as
labeled, are in orange. The sulfur atoms in the two cysteine residues in the colchicine-bound structure are
also shown in orange. All atoms in 2CTC are in light blue, except that the C2-oxygen atom of 2CTC is
shown in garnet (arrow), the reactive C19 atom (sec Fig. 1) is in white, and hydrogen atoms are not shown.
The sulfur atoms in the two cysteine residues in the 2CTC-bound structure are also shown in white. All

atoms in 3CTC are in dark blue, the C3-oxygen atom of 3CTC is shown in yellow (open arrow). the seactive
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€20 atom (see Fig. 1) is in black, and hydrogen atoms are not shown. The sulfur atoms in the two cysteine
residues in the 3CTC-bound structure are also shown in black.

Fig. 8. Superposition of unbound drugs, as indicated, with drugs bound in Site A and Site B. In
each case the unbound drug is shown with carbon atoms in green, oxygen in red, nitrogen in blue, sulfur in
yellow, chloride in light green, and hydrogen not shown, that bound in Site A enitrely in white, and that
bound in Site B entirely in blue.

Fig. 9. Superposition of common structural elements of colchicine, thiocolchicine, 2CTC, and
3CTC when the unbound compounds are subjected to energy minimization modeling. Carbon atoms are

shown in green, oxygen in red, nitrogen in blue, and sulfur in yellow. Hydrogen atoms are not shown.




o

---HNCCH;

OCH3 SCH3
Colchicine Thiocolchicine

2CTC




ey

Ay




CPM

CPM

1

2 3 4 5 6 7 8 9 10




a-Tubulin




-~




-




A




Colchicine







